8382開平方根等於多少
① 平方根的公式
平方根公式如圖:
如果一個非負數x的平方等於a,那麼這個非負數x叫做a的算術平方根。a的算術平方鏈畢根記為,讀作「根號a」,a叫做被開方數(radicand)。求一個非負數a的平方根的運算叫做開平方。
結論:被開方數越大,對應的算術平方根也越大(對所有正數都成立)。一個正數如果有平方根,那麼必定有兩個,它們互為相反數。
拓展資料棚首芹
平方根,又叫二次方根,表示為〔±√ ̄〕,其中屬於非負數的平方根稱之為算芹御術平方根。一個正數有兩個實平方根,它們互為相反數;0隻有一個平方根,就是0本身;負數有兩個共軛的純虛平方根。
② 平方根計算方法
【平方根計算步驟】
將被開方數的整數部分從個位起向左每隔兩位劃為一段,用撇號分開(豎式中的11』56),分成幾段,表示所求平方根是幾位數;
根據左邊第一段里的數,求得平方根的最高位上的數(豎式中的3);
從第一段的數減去最高位上數的平方,在它們的差的右邊寫上第二段數組成第一個余數(豎式中的256);
把求得的最高位數乘以20去試除第一個余數,所得的最大整數作為試商(20×3除256,所得的最大整數是 4,即試商是4);
用所求的平方根的最高位數的20倍加上這個試商再乘以試商.如果所得的積小於或等於余數,試商就是平方根的第二位數;如果所得的積大於余數,就把試商減小再試(豎式中(20×3+4)×4=256,說明試商4就是平方根的第二位數);
用同樣的方法,繼續求平方根的其他各位上的數.
如遇開不盡的情況,可根據所要求的精確度求出它的近似值.
【開平方】
求一個數a的平方根的運算,叫做開平方,其中a叫做被開方數。在實數范圍內a必須大於或等於零,即a為非負數;
③ 平方根的計算公式是什麼
平方根公式:x=√a。
結論:被開方數越大,對應的算術平方根也越大(對所有正數都成立)。
一個正數如果有平方根,那麼必定有兩個,它們互為相反數,顯然,如果知道了這兩個平方根的一個,那麼就可以及時的根據相反數的概念得到它的另一個平方根。
算數平方根和平方根的聯系:
1、前提條件相同:算術平方根和平方根存在的前提條件都是「只有非負數才有算術平方根和平方根」。
2、存在包容關系:平方根包含了算術平方根,因為一個正數的算術平方根只是其兩個平方根中的一個。
3、0的算術平方根和平方根相同,都是0。
④ 如何求平方根
例:求256的平方根
第一步:將被開方數的整數個位起向左每隔兩位劃為一段,用逗號分開,分成幾段,表示所求平方根是幾位數。
例,第一步:將256,分成兩段:
2,56
表示平方根是兩位數(XY,X表是平方根十位上數,Y表示個位數)。
第二步:根據左邊第一段里的數,取該數的平方根的整數部分,作為所要求的平方根求最高位上的數。
例:左邊第一段數值是2,2的平方根是大約等於1.414(這些盡量要記得,100以內的,尤其是能開整數的),由於2的平方根1.414大於1和小於2,所以取整數部分是1作為所要求的平方根求最高位上的數,即所要求的平方根最高位X是1。
第三步:從第一段的數減去最高位上數的平方,在它們的差的右邊寫上第二段數組成第一個余數。
例:第一段數里的數是2.第二步計算出最高數是1
2減去1的平方=1
將1與第二段數(56)組成一個第一個余數:156
第四步:把第二步求得的最高位數(1)乘以20去試除第一個余數(156),取所得結果的整數部分作為第一個試商。
例: 156除以(1乘20)=7.8
第一個試商就是7
第五步:第二步求得的的最高位數(1)乘以20再加上第一個試商(7)再乘以第一個試商(7)。
(1*20+7)*7
如果:(1*20+7)*7小於等於156,則7就是平方根的第二位數.
如果:(1*20+7)*7大於156,將第一個試商7減1,即用6再計算。
由於:(1*20+6)*6=156所以,6就是第平方根的第二位數。
例:求55225的平方根
第一步:將被開方數的整數個位起向並野左每隔兩位劃為一段,用逗號分開,分成幾段,表示所求平方根是幾位數。
例,第一步:將55225,分成三段:
5,52,25
表示平方根是三位數(XYZ)。啟嫌
第二步:根據左邊第一段里的數,取該數的平方根的整數部分,作為所要求的平方根求最高位上的數。
例:左邊第一段數值是5,5的平方根是(2點幾)大於2和小於3,所以取整數部分是2作為所要求的平方根求最高位上的數,即所要求的平方根最高位X是2。
第三步:從第一段的數減去絕旁喊最高位上數的平方,在它們的差的右邊寫上第二段數組成第一個余數。
例:第一段數里的數是5.第二步計算出最高數是2
5減去2的平方=1
將1與第二段數(52)組成一個第一個余數:152
第四步:把第二步求得的最高位數(2)乘以20去試除第一個余數(152),取所得結果的整數部分作為第一個試商。
例: 152除以(2乘20)=3.8
第一個試商就是3
第五步:第二步求得的的最高位數(2)乘以20再加上第一個試商(3)再乘以第一個試商(3)。
(2*20+3)*3
如果:(2*20+3)*3小於等於152,則3就是平方根的第二位數.
如果:(2*20+3)*3大於152,將第一個試商3減1,即用2再計算。
由於:(2*20+3)*3小於152所以,3就是第平方根的第二位數。
第六步:用同樣的方法,繼續求平方根的其他各位上的數。用上一個余數減去上法中所求的積(即152-129=23),與第三段數組成新的余數(即2325)。這時再求試商,要用前面所得到的平方根的前兩位數(即23)乘以20去試除新的余數(2325),所得的最大整數為新的試商。(2325/(23×20)的整數部分為5。)
7.對新試商的檢驗如前法。(右例中最後的余數為0,剛好開盡,則235為所求的平方根。)
⑤ 平方根怎麼算
步驟:
1、將被開方數的整數部分從個位起向左每隔兩位劃為一段,用撇號分開,分成幾段,表示所求平方根是幾位數;
2、根據左邊第一段里的數,求得平方根的最高位上的數;
3、從第一段的數減去最高位上數的平方,在它們的差的右邊寫上第二段數組成第一個余數;
4、把求得的最高位數乘以2去試除第一個余數,所得的最大整數作為試商;
5、用商的最高位數的2倍加上這個試商再乘以試商.如果所得的積小於或等於余數,試商就是平方根的第二位數;如果所得的積大於余數,就把試商減小再試。
註:一個正數如果有平方根,那麼必定有兩個,它們互為相反數。顯然,如果知道了這兩個平方根的一個,那麼就可以及時的根據相反數的概念得到它的另一個平方根。
負數在實數系內不能開平方。只有在復數系內,負數才可以開平方。負數的平方根為一對共軛純虛數。
例如:-1的平方根為±i,-9的平方根為±3i,其中i為虛數單位。
例如,A=5,,即求
5介於1的3次方;至2的3次方;之間(1的3次方=1,2的3次方=8)
初始值X0可以取1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,都可以。例如我們取X0 = 1.9按照公式:
第一步:X1=1.9+(5/1.9^2;-1.9)1/3=1.7。
即5/1.9×1.9=1.3850416,1.3850416-1.9=-0.5149584,-0.5149584×1/3=-0.1716528,1.9+(-0.1716528)=1.7。即取2位數值,,即1.7。
第二步:X2=1.7+(5/1.7^2;-1.7)1/3=1.71。
即5/1.7×1.7=1.73010,1.73-1.7=0.03,0.03×1/3=0.01,1.7+0.01=1.71。取3位數,比前面多取一位數。
第三步:X3=1.71+(5/1.71^2;-1.71)1/3=1.709.
第四步:X4=1.709+(5/1.709^2;-1.709)1/3=1.7099
這種方法可以自動調節,第一步與第三步取值偏大,但是計算出來以後輸出值會自動轉小;第二步,第四步輸入值
偏小,輸出值自動轉大。即5=1.7099^3;
當然初始值X0也可以取1.1,1.2,1.3,。。。1.8,1.9中的任何一個,都是X1 = 1.7 > 。當然,我們在實際中初始值最好採用中間值,即1.5。 1.5+(5/1.5²-1.5)1/3=1.7。
⑥ 平方根怎樣計算
上面我們學習了查表和用計算器求平方根的方法.或許有的同學會問:不用平方根表和計算器,可不可以求出一個數的平方根呢?先一起來研究一下,怎樣求 ,這里1156是四位數,所以它的算術平方根的整數部分是兩位數,且易觀察出其中的十位數是3.於是問題的關鍵在於;怎樣求出它的個位數a?為此,我們從a所滿足的關系式來進行分析.
根據兩數和的平方公式,可以得到
1156=(30+a)2=302+2×30a+a2,
所以 1156-302=2×30a+a2,
即 256=(3×20+a)a,
這就是說, a是這樣一個正整數,它與 3×20的和,廳亂激再乘以它本身,等於256.
為便於求得a,可用下面的豎式來進行計算:
根號上面的數3是平方根的十位數.將 256試除以20×3,得4.由於4與20×3的和64,與4的積等於256,4就是所求的個位數a.豎式中的余數是0,表示開方正好開盡.於是得到
1156=342,
或
上述求平方根的方法,稱為筆算開平方法,用這個方法可以求出任何正數的算術平方根,它的計算步驟如下:
1.將被開方數的整數部分從個位起向左每隔兩位劃為一段,用撇號分開(豎式中的11』56),分成幾段,表示所求平方根是幾位數;
2.根據左邊第一段里的數,求得平方根的最高位上的陪碼數(豎式中的3);
3.從第一段的數減扮襪去最高位上數的平方,在它們的差的右邊寫上第二段數組成第一個余數(豎式中的256);
4.把求得的最高位數乘以20去試除第一個余數,所得的最大整數作為試商(3×20除256,所得的最大整數是 4,即試商是4);
5.用商的最高位數的20倍加上這個試商再乘以試商.如果所得的積小於或等於余數,試商就是平方根的第二位數;如果所得的積大於余數,就把試商減小再試(豎式中(20×3+4)×4=256,說明試商4就是平方根的第二位數);
6.用同樣的方法,繼續求平方根的其他各位上的數.
如遇開不盡的情況,可根據所要求的精確度求出它的近似值.例如求 的近似值(精確到0.01),可列出上面右邊的豎式,並根據這個豎式得到
筆算開平方運算較繁,在實際中直接應用較少,但用這個方法可求出一個數的平方根的具有任意精確度的近似值.
我國古代數學的成就燦爛輝煌,早在公元前一世紀問世的我國經典數學著作《九章算術》里,就在世界數學史上第一次介紹了上述筆算開平方法.據史料記載,國外直到公元五世紀才有對於開平方法的介紹.這表明,古代對於開方的研究我國在世界上是遙遙領先的.
⑦ 82的算術平方根是多少
筆算開根號的方法
1、個位以上數字為奇數時
如:√161.12345
把奇數單獨列出來例子中取3
1=1^2+0
即第一位數為1
餘下應取接下來的兩位作被除數61(除法上取接下來的一位)
除數為第一位數*20+第二位可能的商……即20*1+x
商為x
商*除數<=被除數……本題取2……即2*22=44<61
第二位數為商2
(個位數算完了加一個小數點)
再次取接下來的兩位被除數為(61-44)*100+12=1712
除數為12*20+x=24x
商為6…………商*除數為246*6=1476……餘236
第三位數為6
被除數再取接下來的兩位,為236*100+34=23634
除數為126*20+x
商為9……9*2529=22761……餘873
第四位數為9
被除數為87350
除數為25380+x
商3……3*25383=76149……餘11201
第五位數為3
被除數為1120100
除數為253860+x
商為4……253864*4=1015456……餘103644
第六位取4
……
即本題結果為12.6934
用計算器求得√161.12345=12.693441滿足
2.個位以上為偶數的最先取兩位
如√3456
34=5^2+9
第一位取5
被除數為956
除數為100+x
商取8……108*8=864……餘92
第二位取8
(個位數算完加小數點)
被除數為9200
除數為1160+x
商為7……1167*7=8169……餘1031
第三位取7
……
即本題結果為58.7
計算器求得√3456=58.787754
本題為9.055385
⑧ 平方根計算公式
例:531441
根號531441,先從個位開始,每兩個數字為一節.531441可分為53,14,41.先從53開始,顯然7乘7等於49最接近53,所以根的第一位是7此時的除數也是7.則餘4,再把14移上圓畝去,就是414,這時把除數的個位(7)乘20,再加中手N,這個N就是根的第2位.顯然這個N是2,即:7乘20=140,140+2=142,此時除數是142,而橘培森根的第二位是2.142乘2=284,414-284=130,把41移上去,就是13041,此時除數是142,按上述:142的個位(2),乘20=1440,再加N,這里的N是根的第三位.此時N應是9.即1440+9=1449,且1449乘9=13041,所以根的第三位是9.綜上所述根是729.729乘729=531441.
⑨ 數字平方根怎麼算,詳細作法
你學賀升悉過手工開平方嗎?如果沒學過就只有查平方根表或用手機上的計算器禪乎查出。
如√5=2.236 √2=1.414 √3=1.732 ……
但是在課本上一般不要求算出來,只要化簡就可以了。如√笑亮8=2√2
⑩ 開平方根,怎麼開
要知道怎麼開平方根,你先要清楚的知道平方根的公式。
1、利用公式可知,2的平方也就是2*2=4,所以√4 開方後就=2。同理可知√9=3,√169=13
2、√2 開方=1.414(保留小數點後三位)。可以根據計算圖計算出來。
,讀作「根號a」,a叫做被開方數(radicand)。求一個非負數a的平方根的運算叫做開平方。
結論:被開方數越大,對應的算術平方根也越大(對所有正數都成立)。
一個正數如果有平方根,那麼必定有兩個,它們互為相反數。顯然,如果知道了這兩個平方根的一個,那麼就可以及時的根據相反數的概念得到它的另一個平方根。