一台離心機運行一年能提取多少鈾
⑴ 一天一台能提煉伊朗提煉鈾的分離機的工做原理,一天提煉多少,純度是多少。
工作原理可以稍微解釋一下,就是利用離心原理,因為不同的同位素的原子核質量不同,但是體積確是一雀搭樣的,這就導致不同的同位素的密度由微小的差異。一般講放射性同位素製成氟化物凳歲褲溶液,然後在極高轉速的離心機的作用下使其分離,當然分離不是完全的,所以需要多極分離。效率是很低的。純度的提高是指數形式的,分離次數閱多,耗時越大,棗簡純度越高。
⑵ 提煉武器核濃縮鈾需要多少電量
提煉濃縮鈾需要幾千台離心機同時運轉所消耗的電量是不可預估的,需要大量的電流才能保持離心機的運轉。,1千克核燃料鈾能產生40萬千瓦時的電;如果反復使用這批鈾,則1千克鈾能產生700萬千瓦時以上的電。
核電還被視為一個國家綜合國力的直接體現。從技術上說,核電技術和核武器一樣,都是建立在核反應堆、鈾濃縮和乏燃料後處理的科學和工程研究基礎上。
⑶ 提取濃縮鈾為何需要幾千台離心機,感覺這樣的方法
提純濃縮鈾-235含量的技術比較復雜, 現時用來提純鈾-235的主要方法有氣體擴散法離子交換法、氣體離心法、蒸餾法、電解法、電磁法、電流法等,其中以氣體擴散法最成熟,蘆慧製造第一顆原子彈用的鈾核材料就是用這種方法製造出來的。六氟化鈾氣體被壓縮通過一系列高速旋轉的圓筒,或離心機。鈾-238同位素重分子氣體比鈾-235輕分子氣體更容易在圓筒的近壁處得到富集。在近軸處富集的氣體被導出,並輸送到另一台離心機進一步分離。隨著氣體穿過一系列離心機,其鈾-235同位素分子被逐漸富集。與氣體擴散法相比,氣體離心法所需的電能要小很多,因此該法已被大多數新濃縮廠所採用。比如鈾濃縮關鍵設備p-2離心機。 鈾有兩種同位素:U238和U235 其中U238占絕大多數,但只有U235才是裂變反應需要的 這兩種同位素均勻的混合分布在一起,要進行裂變反應必須提高U235占的比重。經過提純的鈾就叫濃縮鈾 其中核武器用的鈾濃度比核電站的還要高 鈾是存在於自然界中的一種稀有化學元素,具有放射性。鈾主要含三種同位素,即鈾238、鈾235和鈾234,其中只有鈾235是可裂變核元素,在中子轟擊下可發生鏈式核裂變反應,可用作原子彈的核裝料和核電站反應堆的燃料。 在天然礦石中鈾的三種同位素共生,其中鈾235的含量非常低,只有約0.7%。為滿足核武器和核動力的需求,一些國家建造了鈾濃縮廠,以天然鈾礦做原料,運用同位素分離法(擴散法、離心法和激光法等)使天然鈾的三種同位素分離,以提高鈾235的豐度,提煉濃縮鈾。 濃縮」術語的使用涉及旨在前唯提高某一元素特定同位素豐度的同位素分離過程,例如從天然鈾生產濃縮鈾或從普通水生產重水。濃縮設施分離鈾同位素的目的是提高鈾-235相對於鈾-238的相對豐度或濃度。這種設施的能力用分離功單位衡量。 若要在某些類型反應堆和武器中使用鈾,就必須對其進行濃縮。這意味著必須提高易裂變鈾-235的濃度,然後才能將其製成燃料。這種同位素的天然濃度是0.7%,而在大多數通用商業核電廠中,持續鏈式反應的濃度通常約為3.5%。用於武器和艦船推進的豐度通常約為93%。但艦船推進可以只需20%或更低的豐度。鑒於在豐度0.7%至2%之間需要與豐度2%至93%之間同樣多的分離功,因此濃縮過程不是線性的。這意味著在能夠隨時獲得商用濃縮鈾的情況下,達到武器級的濃縮工作量可減少到不足一半,而鈾的供料量可減少到20%以下。 在適用於提高鈾-235濃度的技術中,有7項技術特別重要: 氣體擴散法——這是商業開發的第一個濃縮方法。該工藝依靠不同質量的鈾同位素在轉化為氣態時運動速率的差異。在每一個氣體擴散級,當高壓六氟化鈾氣體透過在級聯中順序安裝的多孔鎳膜時,其鈾-235輕分子氣體比鈾-238分子的氣體更快地通過多孔膜壁。這種泵送過程耗電量很大。已通過膜管的氣體隨後被泵送到下一級,而留在膜管中的氣體則返回到較低級進行再循環。在每一級中,鈾-235/鈾-238濃度比僅略有增加。濃縮到反應堆級的鈾-235豐度需要1000級以上。 氣體離心法——在這類工藝中,六氟化鈾氣體被壓縮通過一系列高速旋轉的圓筒,或離心機。鈾-238同位素重分子氣體比鈾-235輕分子氣陪悔答體更容易在圓筒的近壁處得到富集。在近軸處富集的氣體被導出,並輸送到另一台離心機進一步分離。隨著氣體穿過一系列離心機,其鈾-235同位素分子被逐漸富集。與氣體擴散法相比,氣體離心法所需的電能要小很多,因此該法已被大多數新濃縮廠所採用。 氣體動力學分離法——所謂貝克爾技術是將六氟化鈾氣體與氫或氦的混合氣體經過壓縮高速通過一個噴嘴,然後穿過一個曲面,這樣便形成了可以從鈾-238中分離鈾-235同位素的離心力。氣體動力學分離法為實現濃縮比度所需的級聯雖然比氣體擴散法要少,但該法仍需要大量電能,因此一般被認為在經濟上不具競爭力。在一個與貝克爾法明顯不同的氣體動力學工藝中,六氟化鈾與氫的混合氣體在一個固定壁離心機中的渦流板上進行離心旋轉。濃縮流和貧化流分別從布置上有些類似於轉筒式離心機的管式離心機的兩端流出。南非一個能力為25萬分離功單位的鈾-235最高豐度為5%的工業規模的氣體動力學分離廠已運行了近10年,但也由於耗電過大,而在1995年關閉。 激光濃縮法——激光濃縮技術包括3級工藝:激發、電離和分離。有2種技術能夠實現這種濃縮,即「原子激光法」和「分子激光法」。原子激光法是將金屬鈾蒸發,然後以一定的波長應用激光束將鈾-235原子激發到一個特定的激發態或電離態,但不能激發或電離鈾-238原子。然後,電場對通向收集板的鈾-235原子進行掃描。分子激光法也是依靠鈾同位素在吸收光譜上存在的差異,並首先用紅外線激光照射六氟化鈾氣體分子。鈾-235原子吸收這種光譜,從而導致原子能態的提高。然後再利用紫外線激光器分解這些分子,並分離出鈾-235。該法似乎有可能生產出非常純的鈾-235和鈾-238,但總體生產率和復合率仍有待證明。在此應當指出的是,分子激光法只能用於濃縮六氟化鈾,但不適於「凈化」高燃耗金屬鈈,而既能濃縮金屬鈾也能濃縮金屬鈈的原子激光法原則上也能「凈化」高燃耗金屬鈈。因此,分子激光法比原子激光法在防擴散方面會更有利一些。 同位素電磁分離法——同位素電磁分離濃縮工藝是基於帶電原子在磁場作圓周運動時其質量不同的離子由於旋轉半徑不同而被分離的方法。通過形成低能離子的強電流束並使這些低能離子在穿過巨大的電磁體時所產生的磁場來實現同位素電磁分離。輕同位素由於其圓周運動的半徑與重同位素不同而被分離出來。這是在20世紀40年代初期使用的一項老技術。正如伊拉克在20世紀80年代曾嘗試的那樣,該技術與當代電子學結合能夠用於生產武器級材料。 化學分離法——這種濃縮形式開拓了這樣的工藝,即這些同位素離子由於其質量不同,它們將以不同的速率穿過化學「膜」。有2種方法可以實現這種分離:一是由法國開發的溶劑萃取法,二是日本採用的離子交換法。法國的工藝是將萃取塔中2種不互溶的液體混和,由此產生類似於搖晃1瓶油水混合液的結果。日本的離子交換工藝則需要使用一種水溶液和一種精細粉狀樹脂來實現樹脂對溶液的緩慢過濾。 等離子體分離法——在該法中,利用離子迴旋共振原理有選擇性地激發鈾-235和鈾-238離子中等離子體鈾-235同位素的能量。當等離子體通過一個由密式分隔的平行板組成的收集器時,具有大軌道的鈾-235離子會更多地沉積在平行板上,而其餘的鈾-235等離子體貧化離子則積聚在收集器的端板上。已知擁有實際的等離子體實驗計劃的國家只有美國和法國。美國已於1982年放棄了這項開發計劃。法國雖然在1990年前後停止了有關項目,但它目前仍將該項目用於穩定同位素分離。 迄今為止,只有氣體擴散法和氣體離心法達到了商業成熟程度。所有這7項技術均在不同程度上具有擴散敏感性,因為它們都能夠在一項秘密計劃中不惜代價地被用於從天然鈾或低濃鈾生產高濃鈾。但是,由於這些技術的特徵不同,因而將影響到其被探知的可能性。 http://www.lolong.com/c?in=0&id=3828338
麻煩採納,謝謝!
⑷ 怎樣提煉鈾
天然的鈾礦之中93%都是雹瞎好鈾238,不能作為核反應的材料,只有剩下的3%鈾235才可以作為核裂變的材料,即濃縮鈾,也稱:武器級鈾,用來製造核彈。因為天然的鈾礦只有3%才可以用來製造核彈,所源鉛以就得需要把這3%的武器級鈾235提煉出來,而提煉的方法就是:使用離心機;一般需要上千台離心機運轉數年才可以把鈾235提煉神含出來!
希望能幫到你,望採納哈~不懂再hi我。