当前位置:首页 » 人口概况 » 时间序列需要多少历史

时间序列需要多少历史

发布时间: 2022-10-16 21:18:06

‘壹’ 时间序列预测需要多少历史数据

1 历史文献记录
2 科学手段预测

‘贰’ 毕业论文时间序列数据要多少年

五年以内。
最好是五年以内的研究的期刊或者论文,因为这是这个领域里面最新的资讯,作为你论文的佐证是最好的。
实在没有办法的话用10年以内的也是可以的,当然了,如果有很早以前的,但是又是必须的也可以加上,但是我建议不要用是最好的。

‘叁’ 时间序列预测需要多少历史数据

时间序列是按时间顺序的一组数字序列。时间序列分析就是利用这组数列,应用数理统计方法加以处理,以预测未来事物的发展。时间序列分析是定量预测方法之一,它的基本原理:一是承认事物发展的延续性。应用过去数据,就能推测事物的发展趋势。二是考虑到事物发展的随机性。任何事物发展都可能受偶然因素影响,为此要利用统计分析中加权平均法对历史数据进行处理。该方法方法简单易行,便于掌握,但准确性差,一般只适用于短期预测。

‘肆’ 计量经济学时间序列数据样本最少多少年

朋友,先明确自由度的概念,自由度是指,当一个随机变量是由其他一系列随机变量定义的,这些随机变量独立项数的个数就是这个随机变量的自由度。例如,当x1,x2,..xn相互独立,则它们的平方和服从自由度为n的卡方分布。因此在回归模型中若有两个自变量、三个回归参数,则残差序列e1,e2,..en中有n-3个是独立的(估计每一个参数会损失一个自由度)所以自由度为n-3;如果你的模型不含常数项只有两个参数,自由度就是n-2.李宝仁

‘伍’ (一)时间序列的基本概念

系统中某一变量的观测值按时间顺序排列的一个数值集合x(t1),x(t2),…,x(tn)称之为时间序列,它以时间间隔t(t1<t2<…< tn)为自变量。

时间序列研究的实质是通过处理预测目标本身的时间序列数据,从中寻找和分析事物的变化特征、发展趋势和演变特性,用曲线拟合方法对系统进行客观的描述,进而预测事物的未来发展。

时间序列的假设基础是在一定条件下,被预测事物的过去变化趋势会延续到未来。暗示着历史数据存在着某些信息,利用它们可以解释与预测时间序列的现在和未来。

时间序列分析也是一种回归。回归分析的目的是建立因变量和自变量之间关系的模型;并且可以用自变量来对因变量进行预测。

通常线性回归分析因变量的观测值假定是互相独立并且有同样分布。而时间序列的最大特点是观测值并不独立。时间序列的一个目的是用变量过去的观测值来预测同一变量的未来值。也就是说,时间序列的因变量为变量未来的可能值,而用来预测的自变量中就包含该变量的一系列历史观测值。

‘陆’ 为什么用时间序列进行预测一定要具备足够的历史数据

时间序列预测,究竟需要多少历史数据?
显然,这个问题并没有一个固定的答案,而是会根据特定的问题而改变。
对模型输入大小不同的历史数据,对时间序列预测问题展开讨论,探究历史数据对 ARIMA 预测模型的性能影响。
根据各自特定的时间序列预测场景,展开类似的针对历史数据大小的敏感性分析。
这里我们不会调整模型参数。而且,为了对数据平稳化并适配 ARIMA 模型,必须先删除数据中包含的明显的季节性变化趋势。
我们通过减去前一年数据的办法来获得数据的季节性差异。需要说明的是,这种方法是很粗糙的,因为它并没有考虑闰年的因素。而且,这也意味着第一年的数据将无法用于建模,因为第一年并没有更早的数据。
具体的步进评估方法是:首先选取一个时间段的数据,并根据选定数据建模,训练,然后对下一段数据进行预测,预测后记录数据并计算正确率。接着,将真实的观察数据加入建模数据,建立新的模型并展开训练,对再下一段数据进行预测,并记录结果。依次进行,知道数据用完。

最终,预测结果将被集合在一起,与真实观察数据中的最后一年比较,计算出错误情况。在这种情况下,RMSE 将被用作预测得分,并将与观察结果的数量级等同。

‘柒’ 时间序列预测法的步骤有哪些

时间序列预测法的有以下几个步骤。

第一步,收集历史资料,加以整理,编成时间序列,并根据时间序列绘成统计图。时间序列分析通常是把各种可能发生作用的因素进行分类,传统的分类方法是按各种因素的特点或影响效果进行分类:

①长期趋势;

②季节变动;

③循环变动;

④不规则变动。

第二步,分析时间序列。

时间序列中的每一时期的数值都是由许许多多不同的因素同时发生作用后的综合结果。

第三步,求时间序列的长期趋势(T)、季节变动(S)和不规则变动(I)的值,并选定近似的数学模式来代表它们。对于数学模式中的诸未知参数,使用合适的技术方法求出其值。

第四步,利用时间序列资料求出长期趋势、季节变动和不规则变动的数学模型后,就可以利用它来预测未来的长期趋势值T和季节变动值S,在可能的情况下预测不规则变动值I。然后用以下模式计算出未来的时间序列的预测值Y。

加法模式:T+S+I=Y乘法模式:T乘以S乘以I=Y

如果不规则变动的预测值难以求得,就只求长期趋势和季节变动的预测值,以两者相乘之积或相加之和为时间序列的预测值。如果经济现象本身没有季节变动或不需预测分季分月的资料,则长期趋势的预测值就是时间序列的预测值,即T=Y。但要注意这个预测值只反映现象未来的发展趋势,即使很准确的趋势线在按时间顺序的观察方面所起的作用本质上也只是一个平均数的作用,实际值将围绕着它上下波动。

‘捌’ 时间序列入门

时间序列 (英语:time series)是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理

时间序列中的每个观察值大小,是影响变化的各种不同因素在同一时刻发生作用的综合结果。从这些影响因素发生作用的大小和方向变化的时间特性来看,这些因素造成的时间序列数据的变动分为四种类型。
(1)趋势性:某个变量随着时间进展或自变量变化,呈现一种比较缓慢而长期的持续上升、下降、停留的同性质变动趋向,但变动幅度可能不相等。
(2)周期性:某因素由于外部影响随着自然季节的交替出现高峰与低谷的规律。
(3)随机性:个别为随机变动,整体呈统计规律。
(4)综合性:实际变化情况是几种变动的叠加或组合。预测时设法过滤除去不规则变动,突出反映趋势性和周期性变动。

通常,时间序列预测描述了预测下一个时间步长的观测值。这被称为“一步预测”,因为仅要预测一个时间步。在一些时间序列问题中,必须预测多个时间步长。与单步预测相比,这些称为多步时间序列预测问题。比如给定历史7天内的天气温度,单步预测就是预测第8天的温度,预测后续三天的气温就是多步预测。

(1) 直接多步预测
(2) 递归多步预测
(3) 直接+递归的混合策略
(4) 第五种策略:seq2seq结构

‘玖’ 时间序列基础

1.随机时序分析的基本概念
1)随机变量:简单的随机现象,如某班一天学生出勤人数,是静态的。
2)随机过程:随机现象的动态变化过程。动态的。如某一时期各个时刻的状态。
所谓随机过程,就是说现象的变化没有确定形式,没有必然的变化规律。用数学语言来说,就是事物变化的过程不能用一个(或几个)时间t的确定的函数来描述。
如果对于每一特定的t属于T(T是时间集合),X(t)是一个随机变量,则称这一族无穷多个随机变量{X(t),t属于T}是一个随机过程。

2.白噪声序列
1)纯随机过程:随机变量X(t)(t=1,2,3……),如果是由一个不相关的随机变量的序列构成的,即对于所有s不等于k,随机变量Xs和Xk的协方差为零,则称其为 纯随机过程
2)白噪声过程:如果一个纯随机过程的期望和方差均为常数,则称之为 白噪声过程 。白噪声过程的样本实称成为白噪声序列,简称白噪声。
3)高斯白噪声序列:如果白噪声具体是服从均值为0、方差为常数的正态分布,那就是 高斯白噪声序列

3.平稳性序列
1)平稳性可以说是时间序列分析的基础。平稳的通俗理解就是时间序列的一些行为不随时间改变, 所谓平稳过程就是其统计特性不随时间的平移而变化的过程。
2)即时间序列内含的规律和逻辑,要在被预测的未来时间段内能够延续下去。这样我们才能用历史信息去预测未来信息,类似机器学习中的训练集和测试集同分布。
3)如果时间序列的变化是没有规律的、完全随机的,那么预测模型也就没有用。
4)平稳性的数学表达:如果时间序列在某一常数附近波动且波动范围有限,即有常数均值和常数方差,并且延迟k期的序列变量的自协方差和自相关系数是相等的或者说延迟k期的序列变量之间的影响程度是一样的,则称该序列为平稳序列。简单说就是没有明显趋势且波动范围有限。

4.严平稳/强平稳
1)通俗来说,就是时间序列的联合分布随着时间变化严格保持不变。
2)数学表达:如果对所有的时刻 t, (yt1,yt2,…ytm)的联合分布与(y(t1+k),(yt2+k),…y(tm+k))的联合分布相同,我们称时间序列 {yt} 是严平稳的。也就是时间序列的联合分布在时间的平移变换下保持不变。

5.弱平稳
1)数学表达:均值不变,协方差Cov(yt,y(t-k))=γk,γk依赖于k。
2)即协方差也不随时间改变,而仅与时间差k相关。
3)可以根据根据时间序列的折线图等大致观察数据的(弱)平稳性:*所有数据点在一个常数水平上下以相同幅度波动。
4)弱平稳的线性时间序列具有短期相关性(证明见参考书),即通常只有近期的序列值对现时值得影响比较明显,间隔越远的过去值对现时值得影响越小。至于这个间隔,也就是下面要提到的模型的阶数。

6.严平稳和弱平稳的关系
1)严平稳是一个很强的条件,难以用经验的方法验证,所以一般将弱平稳性作为模型的假设条件。
2)两者并不是严格的包含与被包含关系,但当时间序列是正态分布时,二者等价。

7.单位根非平稳序列(可转换为平稳序列的非平稳序列)
在金融数据中,通常假定资产收益率序列是弱平稳的。但还有一些研究对象,比如利率、汇率、资产的价格序列,往往不是平稳的。对于资产的价格序列,其非平稳性往往由于价格没有固定的水平,这样的非平稳序列叫做单位根(unit-root)非平稳序列。
1)最着名的单位根非平稳序列的例子是随机游走(random walk)模型:
pt=μ+p(t-1)+εt
μ是常数项(漂移:drift)。εt是白噪声序列,则pt就是一个随机游走。它的形式和AR模型很像,但不同之处在于,AR模型中,系数的模需要小于1,这是AR的平稳性条件,而随机游走相当于系数为1的AR公式,不满足AR模型的平稳性条件。
随机游走模型可作为(对数)股价运动的统计模型,在这样的模型下,股价是不可预测的。因为εt关于常数对称,所以在已知p(t-1)的条件下,pt上升或下降的概率都是50%,无从预测。
2)带趋势项的时间序列
pt=β0+β1*t+yt,yt是一个平稳时间序列。
带漂移的随机游走模型,其均值和方差都随时间变化;而带趋势项的时间序列,其均值随时间变化,但方差则是不变的常数。
单位根非平稳序列可以进行平稳化处理转换为平稳序列。比如用差分法处理随机游走序列,用用简单的回归分析移除时间趋势处理带趋势项的时间序列。

建立具体的模型,需解决如下三个问题模型的具体形式、时序变量的滞后期以及随机扰动项的结构。

μ是yt的均值;ψ是系数,决定了时间序列的线性动态结构,也被称为权重,其中ψ0=1;{εt}为高斯白噪声序列,它表示时间序列{yt}在t时刻出现了新的信息,所以εt称为时刻t的innovation(新信息)或shock(扰动)。
线性时间序列模型,就是描述线性时间序列的权重ψ的计量经济模型或统计模型,比如ARIMA。因为并非所有金融数据都是线性的,所以不是所有金融数据都适合ARIMA等模型。

①自回归模型(AR)
用变量自身的历史时间数据对变量进行回归,从而预测变量未来的时间数据。
p阶(滞后值,可暂理解为每个移动窗口有p期)自回归公式即AR(p):

②移动平均模型(MA)
移动平均模型关注的是误差项的累加,能够有效消除预测中的随机波动。
可以看作是白噪声序列的简单推广,是白噪声序列的有限线性组合。也可以看作是参数受到限制的无穷阶AR模型。

③自回归移动平均模型(ARMA)
有时候,要用很多阶数的AR和MA模型(见后面的定阶问题),为解决这个问题提出ARMA模型。
对于金融中的收益率序列,直接使用ARMA模型的时候较少,但其概念与波动率建模很相关,GARCH模型可以认为是对{εt}的ARMA模型。

④自回归差分移动平均模型(ARIMA)
ARIMA比ARMA仅多了个"I",代表的含义可理解为 差分。
一些非平稳序列经过d次差分后,可以转化为平稳时间序列。我们对差分1次后的序列进行平稳性检验,若果是非平稳的,则继续差分。直到d次后检验为平稳序列。

⑤一般分析过程
1、 平稳性检验
ADF检验(单位根检验):这是一种检查数据稳定性的统计测试。
原假设(无效假设):时间序列是不稳定的。
2、 平稳化处理
平稳化的基本思路是:通过建模并估计趋势和季节性这些因素,并从时间序列中移除,来获得一个稳定的时间序列,然后再使用统计预测技术来处理时间序列,最后将预测得到的数据,通过加入趋势和季节性等约束,来还原到原始时间序列数据。
2.0 对数变换
对某些时间序列需要取对数处理,一是可以将一些指数增长的时间序列变成线性增长,二是可以稳定序列的波动性。对数变换在经济金融类时间序列中常用。
2.1 差分法
如果是单位根非平稳的(比如随机游走模型),可以对其进行差分化。它能让数据呈现一种更加平稳的趋势。差分阶数的选择通常越小越好,只要能够使得序列稳定就行。
2.2 平滑法
移动平均、指数加权移动平均
注:经差分或平滑后的数据可能因包含缺失值而不能使用检验,需要将缺失值去除
2.3 分解法
建立有关趋势和季节性的模型,并从模型中删除它们。
3 、建立模型:模型选择和模型的定阶
模型的选择即在AR、MA、ARMA、ARIMA中间如何选择。
模型的定阶即指定上面过程中产生的超参数p、q和d(差分的阶数)。
(1)用ACF和PACF图判断使用哪种线性时间序列模型
AR模型:ACF拖尾,PACF截尾,看PACF定阶。
MA模型:ACF截尾,PACF拖尾,看ACF定阶。
ARMA模型:都拖尾。(EACF定阶)
截尾:在某阶后 迅速 趋于0(后面大部分阶的对应值在二倍标准差以内);
拖尾:按指数衰减或震荡,值到后面还有增大的情况。
ARIMA模型:适用于差分后平稳的序列。
(2)利用 信息准则 函数选择合适的阶
对于个数不多的时序数据,可以通过观察自相关图和偏相关图来进行模型识别,倘若要分析的时序数据量较多,例如要预测每只股票的走势,就不可能逐个去调参了。这时可以依据AIC或BIC准则识别模型的p, q值,通常认为AIC或BIC值越小的模型相对更优。
AIC或BIC准则综合考虑了残差大小和自变量的个数,残差越小AIC或BIC值越小,自变量个数越多AIC或BIC值越大。AIC或BIC准则可以说是对模型过拟合设定了一个标准。
AIC (Akaike information criterion,赤池信息度量准则)
AIC=2k-2ln(L)
· BIC (Bayesian information criterion,贝叶斯信息度量准则)
BIC=kln(n)-2ln(L)
k为模型的超参数个数,n为样本数量,L为似然函数。
类比机器学习中的损失函数=经验损失函数+正则化项。
模型选择标准:AIC和BIC越小越好(在保证精度的情况下模型越简单越好)
4 、模型检验和评估(之前应切分训练集和验证集)
检验残差是否符合标准(QQ图):是否服从均值为0,方差是常数的正态分布(εt是否是高斯白噪声序列)。
拟合优度检验(模型的评估):R 2和调整后的R 2(R^2只适用于平稳序列)。
5 、预测
如果之前进行了标准化、差分化等,需要进行还原:
标准化的还原要注意是log(x+1)还是log(x)。

1 、基础概念
波动率
在期权交易中,波动率是标的资产的收益率的条件标准差。之前的平稳序列假设方差为常数,但当序列的方差不是常数时,我们需要用波动率对其变化进行描述。
对于金融时间序列,波动率往往具有以下特征:
存在波动率聚集(volatility cluster)现象。 即波动率在一些 时间段 上高,一些时间段上低。
波动率以连续时间变化,很少发生跳跃。
波动率不会发散到无穷,而是在固定的范围内变化(统计学角度上说,其是平稳的)
杠杆效应:波动率对价格大幅上升和大幅下降的反应是不同的。
波动率模型/条件异方差模型
给资产收益率的波动率进行建模的模型叫做条件异方差模型。这些波动率模型试图刻画的数据有这样的特性: 它们是序列不相关或低阶序列相关的(比如股票的日收益率可能相关,但月收益率则无关),但又不是独立的 。波动率模型就是试图刻画序列的这种非独立性。
定义信息集F(t-1)是包含过去收益率的一切线性函数,假定F(t-1)给定,那么在此条件下时间序列yt的条件均值和条件方差分别表示为:

热点内容
马路上汽车的噪音在多少分贝 发布:2023-08-31 22:08:23 浏览:1892
应孕棒多少钱一盒 发布:2023-08-31 22:08:21 浏览:1365
标准养老金一年能领多少钱 发布:2023-08-31 22:05:05 浏览:1649
湖北通城接网线多少钱一个月 发布:2023-08-31 21:59:51 浏览:1731
开随车吊车多少钱一个月 发布:2023-08-31 21:55:06 浏览:1494
京东付尾款怎么知道前多少名 发布:2023-08-31 21:52:58 浏览:1814
在学校租铺面一个月要多少钱 发布:2023-08-31 21:52:09 浏览:1955
2寸有多少厘米 发布:2023-08-31 21:50:34 浏览:1600
知道电压如何算一小时多少电 发布:2023-08-31 21:46:20 浏览:1578
金手镯54号圈周长是多少厘米 发布:2023-08-31 21:44:28 浏览:1752