光纤温度传感器多少合适
㈠ 测量0至200摄氏度,要求误差0.1度,用什么温度传感器比较好
温度传感器,使用范围广,数量多,居各种传感器之首。温度传感器的发展大致经历了以下3个阶段:
1.传统的分立式温度传感器(含敏感元件),主要是能够进行非电量和电量之间转换。2.模拟集成温度传感器/控制器。
3.智能温度传感器。目前,国际上新型温度传感器正从模拟式想数字式、集成化向智能化及网络化的方向发展。
温度传感器的分类
温度传感器按传感器与被测介质的接触方式可分为两大类:一类是接触式温度传感器,一类是非接触式温度传感器。
接触式温度传感器的测温元件与被测对象要有良好的热接触,通过热传导及对流原理达到热平衡,这是的示值即为被测对象的温度。这种测温方法精度比较高,并可测量物体内部的温度分布。但对于运动的、热容量比较小的及对感温元件有腐蚀作用的对象,这种方法将会产生很大的误差。
非接触测温的测温元件与被测对象互不接触。常用的是辐射热交换原理。此种测稳方法的主要特点是可测量运动状态的小目标及热容量小或变化迅速的对象,也可测量温度场的温度分布,但受环境的影响比较大。
温度传感器的发展
1.传统的分立式温度传感器——热电偶传感器
热电偶传感器是工业测量中应用最广泛的一种温度传感器,它与被测对象直接接触,不受中间介质的影响,具有较高的精度;测量范围广,可从-50~1600℃进行连续测量,特殊的热电偶如金铁——镍铬,最低可测到-269℃,钨——铼最高可达2800℃。
2.模拟集成温度传感器
集成传感器是采用硅半导体集成工艺制成的,因此亦称硅传感器或单片集成温度传感器。模拟集成温度传感器是在20世纪80年代问世的,它将温度传感器集成在一个芯片上、可完成温度测量及模拟信号输出等功能。
模拟集成温度传感器的主要特点是功能单一(仅测量温度)、测温误差小、价格低、响应速度快、传输距离远、体积小、微功耗等,适合远距离测温,不需要进行非线性校准,外围电路简单。
2.1光纤传感器
光纤式测温原理
光纤测温技术可分为两类:一是利用辐射式测量原理,光纤作为传输光通量的导体,配合光敏元件构成结构型传感器;二是光纤本身就是感温部件同时又是传输光通量的功能型传感器。光纤挠性好、透光谱段宽、传输损耗低,无论是就地使用或远传均十分方便而且光纤直径小,可以单根、成束、Y型或阵列方式使用,结构布置简单且体积小。因此,作为温度计,适用的检测对象几乎无所不包,可用于其他温度计难以应用的特殊场合,如密封、高电压、强磁场、核辐射、严格防爆、防水、防腐、特小空间或特小工件等等。目前,光纤测温技术主要有全辐射测温法、单辐射测温法、双波长测温法及多波长测温等
2.1.1 全辐射测温法
全辐射测温法是测量全波段的辐射能量,由普朗克定律:
测量中由于周围背景的辐射、测试距离、介质的吸收、发射及透过率等的变化都会严重影响准确度。同时辐射率也很难预知。但因该高温计的结构简单,使用操作方便,而且自动测量,测温范围宽,故在工业中一般作为固定目标的监控温度装置。该类光纤温度计测量范围一般在600~3000℃,最大误差为16℃。
2.1.2 单辐射测温法
由黑体辐射定律可知,物体在某温度下的单色辐射度是温度的单值函数,而且单色辐射度的增长速度较温度升高快得多,可以通过对于单辐射亮度的测量获得温度信息。在常用温度与波长范围内,单色辐射亮度用维恩公式表示:
2.1.3 双波长测温法
双波长测温法是利用不同工作波长的两路信号比值与温度的单值关系确定物体温度。两路信号的比值由下式给出:
际应用时,测得R(T)后,通过查表获知温度T。同时,恰当地选择λ1和λ2,使被测物体在这两特定波段内,ε(λ1,T)与ε(λ2,T)近似相等,就可得到与辐射率无关的目标真实温度。这种方法响应快,不受电磁感应影响,抗干扰能力强。特别在有灰尘,烟雾等恶劣环境下,对目标不充满视场的运动或振动物体测温,优越性显着。但是,由于它假设两波段的发射率相等,这只有灰体才满足,因此在实际应用中受到了限制。该类仪器测温范围一般在600~3000℃,准确度可达2℃。
2.1.4 多波长辐射测温法
多波长辐射测温法是利用目标的多光谱辐射测量信息,经过数据处理得到真温和材料光谱发射率。考虑到多波长高温计有n个通道,其中第i个通道的输出信号Si可表示为:
将式(9)~(13)中的任何一式与式(8)联合,便可通过拟合或解方程的方法求得温度T和光谱发射率。Coates[8,9]在1988年讨论了式(9)、(10)假设下多波长高温计数据拟合方法和精度问题。1991年Mansoor[10]等总结了多波长高温计数据拟合方法和精度问题。 该方法有很高的精度,目前欧共体及美国联合课题组的Hiernaut等人已研究出亚毫米级的6波长高温计(图4),用于2000~5000K真温的测量[11]。哈尔滨工业大学研制成了棱镜分光的35波长高温计,并用于烧蚀材料的真温测量。多波长高温计在辐射真温测量中已显出很大潜力,在高温,甚高温,特别是瞬变高温对象的真温测量方面,多波长高温计量是很有前途的仪器。该类仪器测温范围广,可用于600~5000℃温度区真温的测量,准确度可达±1%。
2.1.5 结 论
光纤技术的发展,为非接触式测温在生产中的应用提供了非常有利的条件。光纤测温技术解决了许多热电偶和常规红外测温仪无法解决的问题。而在高温领域,光纤测温技术越来越显示出强大的生命力。全辐射测温法是测量全波段的辐射能量而得到温度,周围背景的辐射、介质吸收率的变化和辐射率εT的预测都会给测量带来困难,因此难于实现较高的精度。单辐射测温法所选波段越窄越好,可是带宽过窄会使探测器接收的能量变得太小,从而影响其测量准确度。多波长辐射测温法是一种很精确的方法,但工艺比较复杂,且造价高,推广应用有一定困难。双波长测温法采用波长窄带比较技术,克服了上述方法的诸多不足,在非常恶劣的条件下,如有烟雾、灰尘、蒸汽和颗粒的环境中,目标表面发射率变化的条件下,仍可获得较高的精度
2.2半导体吸收式光纤温度传感器是一种传光型光纤温度传感器。所谓传光型光纤温度传感器是指在光纤传感系统中,光纤仅作为光波的传输通路,而利用其它如光学式或机械式的敏感元件来感受被测温度的变化。这种类型主要使用数值孔径和芯径大的阶跃型多模光纤。由于它利用光纤来传输信号,因此它也具有光纤传感器的电绝缘、抗电磁干扰和安全防爆等优点,适用于传统传感器所不能胜任的测量场所。在这类传感器中,半导体吸收式光纤温度传感器是研究得比较深入的一种。
半导体吸收式光纤温度传感器由一个半导体吸收器、光纤、光发射器和包括光探测器的信号处理系统等组成。它体积小,灵敏度高,工作可靠,容易制作,而且没有杂散光损耗。因此应用于象高压电力装置中的温度测量等一些特别场合中,是十分有价值的。
B 半导体吸收式光纤温度传感器的测温原理
半导体吸收式光纤温度传感器是利用了半导体材料的吸收光谱随温度变化的特性实现的。根据 的研究,在 20~972K 温度范围内,半导体的禁带宽度能量Eg 与
温度T 的关系为
"
3.智能温度传感器
智能温度传感器(亦称数字温度传感器)是在20世纪90年代中期问世的。它是微电子技术、计算机技术和自动测试技术(ATE_)的结晶。目前,国际上已开发出多种智能温度传感器系列产品。智能温度传感器内部包含温度传感器、A/D传感器、信号处理器、存储器(或寄存器)和接口电路。有的产品还带多路选择器、中央控制器(CPU)、随机存取存储器(RAM)和只读存储器(ROM)。
智能温度传感器能输出温度数据及相关的温度控制量,适配各种微控制器(MCU),并且可通过软件来实现测试功能,即智能化取决于软件的开发水平。
3.1数字温度传感器。
随着科学技术的不断进步与发展,温度传感器的种类日益繁多,数字温度传感器更因适用于各种微处理器接口组成的自动温度控制系统具有可以克服模拟传感器与微处理器接口时需要信号调理电路和A/D转换器的弊端等优点,被广泛应用于工业控制、电子测温计、医疗仪器等各种温度控制系统中。其中,比较有代表性的数字温度传感器有DS1820、MAX6575、DS1722、MAX6635等。
一、DS1722的工作原理
1 、DS1722的主要特点
DS1722是一种低价位、低功耗的三总线式数字温度传感器,其主要特点如表1所示。
2、DS1722的内部结构
数字温度传感器DS1722有8管脚m-SOP封装和8管脚SOIC封装两种,其引脚排列如图1所示。它由四个主要部分组成:精密温度传感器、模数转换器、SPI/三线接口电子器件和数据寄存器,其内部结构如图2所示。
开始供电时,DS1722处于能量关闭状态,供电之后用户通过改变寄存器分辨率使其处于连续转换温度模式或者单一转换模式。在连续转换模式下,DS1722连续转换温度并将结果存于温度寄存器中,读温度寄存器中的内容不影响其温度转换;在单一转换模式,DS1722执行一次温度转换,结果存于温度寄存器中,然后回到关闭模式,这种转换模式适用于对温度敏感的应用场合。在应用中,用户可以通过程序设置分辨率寄存器来实现不同的温度分辨率,其分辨率有8位、9位、10位、11位或12位五种,对应温度分辨率分别为1.0℃、0.5℃、0.25℃、0.125℃或0.0625℃,温度转换结果的默认分辨率为9位。DS1722有摩托罗拉串行接口和标准三线接口两种通信接口,用户可以通过SERMODE管脚选择通信标准。
3、DS1722温度操作方法
传感器DS1722将温度转换成数字量后以二进制的补码格式存储于温度寄存器中,通过SPI或者三线接口,温度寄存器中地址01H和02H中的数据可以被读出。输出数据的地址如表2所示,输出数据的二进制形式与十六进制形式的精确关系如表3所示。在表3中,假定DS1722 配置为12位分辨率。数据通过数字接口连续传送,MSB(最高有效位)首先通过SPI传输,LSB(最低有效位)首先通过三线传输。
4、DS1722的工作程序
DS1722的所有的工作程序由SPI接口或者三总线通信接口通过选择状态寄存器位置适合的地址来完成。表4为寄存器的地址表格,说明了DS1722两个寄存器(状态和温度)的地址。
1SHOT是单步温度转换位,SD是关闭断路位。如果SD位为“1”,则不进行连续温度转换,1SHOT位写入“1”时,DS1722执行一次温度转换并且把结果存在温度寄存器的地址位01h(LSB)和02h(MSB)中,完成温度转换后1SHOT自动清“0”。如果SD位是“0”,则进入连续转换模式,DS1722将连续执行温度转换并且将全部的结果存入温度寄存器中。虽然写到1SHOT位的数据被忽略,但是用户还是对这一位有读/写访问权限。如果把SD改为“1”,进行中的转换将继续进行直至完成并且存储结果,然后装置将进入低功率关闭模式。
传感器上电时默认1SHOT位为“0”。R0,R1,R2为温度分辨率位,如表5所示(x=任意值)。用户可以读写访问R2,R1和R0位,上电默认状态时R2=“0”,R1=“0”,R0=“1”(9位转换)。此时,通信口保持有效,用户对SD位有读/写访问权限,并且其默认值是“1”(关闭模式)。
二、智能温度传感器DS18B20的原理与应用
DS18B20是美国DALLAS半导体公司继DS1820之后最新推出的一种改进型智能温度传感器。与传统的热敏电阻相比,他能够直接读出被测温度并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式。可以分别在93.75 ms和750 ms内完成9位和12位的数字量,并且从DS18B20读出的信息或写入DS18B20的信息仅需要一根口线(单线接口)读写,温度变换功率来源于数据总线,总线本身也可以向所挂接的DS18B20供电,而无需额外电源。因而使用DS18B20可使系统结构更趋简单,可靠性更高。他在测温精度、转换时间、传输距离、分辨率等方面较DS1820有了很大的改进,给用户带来了更方便的使用和更令人满意的效果。
2DS18B20的内部结构
DS18B20采用3脚PR35封装或8脚SOIC封装,其内部结构框图如图1所示。
(1) 64 b闪速ROM的结构如下:�
开始8位是产品类型的编号,接着是每个器件的惟一的序号,共有48位,最后8位是前56位的CRC校验码,这也是多个DS18B20可以采用一线进行通信的原因。
(2) 非易市失性温度报警触发器TH和TL,可通过软件写入用户报警上下限。
(3) 高速暂存存储器
DS18B20温度传感器的内部存储器包括一个高速暂存RAM和一个非易失性的可电擦除的E�2RAM。后者用于存储TH,TL值。数据先写入RAM,经校验后再传给E�2RAM。而配置寄存器为高速暂存器中的第5个字节,他的内容用于确定温度值的数字转换分辨率,DS18B20工作时按此寄存器中的分辨率将温度转换为相应精度的数值。该字节各位的定义如下:
低5位一直都是1,TM是测试模式位,用于设置DS18B20在工作模式还是在测试模式。在DS18B20出厂时该位被设置为0,用户不要去改动,R1和R0决定温度转换的精度位数,即是来设置分辨率,如表1所示(DS18B20出厂时被设置为12位)。�
由表1可见,设定的分辨率越高,所需要的温度数据转换时间就越长。因此,在实际应用中要在分辨率和转换时间权衡考虑。
高速暂存存储器除了配置寄存器外,还有其他8个字节组成,其分配如下所示。其中温度信息(第1,2字节)、TH和TL值第3,4字节、第6~8字节未用,表现为全逻辑1;第9字节读出的是前面所有8个字节的CRC码,可用来保证通信正确。�
当DS18B20接收到温度转换命令后,开始启动转换。转换完成后的温度值就以16位带符号扩展的二进制补码形式存储在高速暂存存储器的第1,2字节。单片机可通过单线接口读到该数据,读取时低位在前,高位在后,数据格式以0�062 5 ℃/LSB形式表示。温度值格式如下:�
对应的温度计算:当符号位S=0时,直接将二进制位转换为十进制;当S=1时,先将补码变换为原码,再计算十进制值。表2是对应的一部分温度值。�
DS18B20完成温度转换后,就把测得的温度值与TH,TL作比较,若T>TH或T<TL,则将该器件内的告警标志置位,并对主机发出的告警搜索命令作出响应。因此,可用多只DS18B20同时测量温度并进行告警搜索。
(4) CRC的产生
在64 b ROM的最高有效字节中存储有循环冗余校验码(CRC)。主机根据ROM的前56位来计算CRC值,并和存入DS18B20中的CRC值做比较,以判断主机收到的ROM数据是否正确。�
3DS18B20的测温原理
DS18B20的测温原理如图2所示,图中低温度系数晶振的振荡频率受温度的影响很小〔1〕,用于产生固定频率的脉冲信号送给减法计数器1,高温度系数晶振随温度变化其震荡频率明显改变,所产生的信号作为减法计数器2的脉冲输入,图中还隐含着计数门,当计数门打开时,DS18B20就对低温度系数振荡器产生的时钟脉冲后进行计数,进而完成温度测量。计数门的开启时间由高温度系数振荡器来决定,每次测量前,首先将-55 ℃所对应的基数分别置入减法计数器1和温度寄存器中,减法计数器1和温度寄存器被预置在�-55 ℃�所对应的一个基数值。减法计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当减法计数器1的预置值减到0时温度寄存器的值将加1,减法计数器1的预置将重新被装入,减法计数器1重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到减法计数器2计数到0时,停止温度寄存器值的累加,此时温度寄存器中的数值即为所测温度。图2中的斜率累加器用于补偿和修正测温过程中的非线性,其输出用于修正减法计数器的预置值,只要计数门仍未关闭就重复上述过程,直至温度寄存器值达到被测温度值,这就是DS18B20的测温原理。
另外,由于DS18B20单线通信功能是分时完成的,他有严格的时隙概念,因此读写时序很重要。系统对DS18B20的各种操作必须按协议进行。操作协议为:初始化DS18B20(发复位脉冲)→发ROM功能命令→发存储器操作命令→处理数据。
㈡ 光纤温度传感器在设置调节器温度控制参数时为什么要额外调高几度
因为光线温度传感器灵敏度比较低,反应比较滞后,需要额外调高几度来弥补这种不足,以达到要求的温度
㈢ 光纤能耐多过的温度
光纤能承受多少温度
光纤线怕高温吗?不同种类的光纤都有一个上限值。标准光纤网线的工作温度为:-40ºC ~ +75ºC。
如果是工业上用的光纤,由于每种光纤组成不同,所能承受的高温和低温都不一样,具体需要咨询厂家。
光纤受温度影响
1、光纤的温度特性是指在高、低温条件下对光纤损耗的影响。在低温条件下光纤损耗增大,这是由于光纤涂覆层、套塑层和石英的膨胀系数不同,有机树脂和塑料的热膨胀系数比石英大得多,低温收缩、高温伸长,光纤在这种轴向压缩力的作用下产生微弯使损耗增大。若在低温下工作,随着温度的不断降低,光纤损耗就不断增大,当温度降至-55℃左右时,损耗急剧增加,使系统无法正常运行。
2、光纤因温度变化产生微弯损耗是由于热胀冷缩所造成。有物理学知道,构成光纤的二氧化硅(SiO2)的热膨胀系数很小,在温度降低时几乎不收缩。而光纤在成缆过程中必须经过涂覆和加上一些其他构件,涂覆材料及其他构件的膨胀系数较大,当温度降低时,收缩比较严重,所以当温度变化时,材料的膨胀系数不同,将使光纤产生微弯,尤其表现在低温区。
光纤工作温度范围
荧光光纤测温系统的工作环境温度上限和下限范围通常在-20℃~+55℃
光纤温度传感器的测量范围 -40℃~200.0℃ 另外可以定制更高温度感应的测温传感器。
一般常规耐高温光纤是-20°~+300°长期性的,短期的话最高可达350°
分布式光纤测温系统的工作环境温度 -10℃~50℃,测温范围常规温度:-40—120℃;高温光缆:-40—400℃
光纤光栅测温传感器的测量温度范围 -40℃~300℃
㈣ 光纤温度传感器有哪几种类型试说明各自的测温原理
光纤温度传感器可以分为荧光光纤温度传感器和分布式光纤测温系统。
华光天锐荧光光纤测温系统简介
SR-G光纤温度传感器在高电压、强电磁干扰等特殊环境下测温有着独特的技术优势。其中变送器使用的荧光式光纤温度传感器的温度热点与测量信号接收部分没有使用电气连接,能长期高精度和高稳定度工作,这大大提高了其应用范围。与此同时,光纤测温变送器有效地解除高压断路器或电缆头处于过高温环境下使用而缩短寿命,甚至烧毁断路器或电缆,不利于开关柜的安全运行等隐患。变送器的精度及灵敏度高且耐高压防腐蚀、可远程监测、寿命长,体积小、使得仪表维护简易方便,运输安全。其内部模块化集成设计,美观合理。
荧光光纤温度传感器介绍
SR-C光纤探头由ST接头、光纤光缆、末端感温端三部分组成。ST接头是与光电模块的连接部分;光纤光缆为传光部分,内部为石英光纤,石英光纤外部有涂覆层和包层,最外部为特氟龙保护套;末端感温端含有感温稀土材料,用于产生含有温度信息的光信号;光纤整体耐200℃高温,外表直径为3mm。长期弯曲半径13.2cm。短期弯曲半径4.4cm。光纤引出线对地距离为0.4m的情况下,耐受工频电压100KV,持续时间5min
㈤ 光纤温度传感器的特性参数有哪些
测温范围,灵敏度,线性度,重复性,精度,上升时间,时间常数,响应时间
㈥ 光纤温度传感器的优点
光纤温度传感器由由于光学器件,光纤材料固有的抗电磁干扰(EMI/RF)特征,成为制作适应严峻环境使用的
传感器的理想材料。传感器与相应的信号调理器组成完整的光纤传感系统。
光纤传感器部分为全光学器件,可以采用(Fabry–Perot)干涉原理,也可以利用光纤喇曼散射
或是布里渊散射特性制成的分布式传感头。非电介质,完全抗电磁干扰且容易安装。非常适合宇
航,核电,强电磁干扰以及其他有害有毒环境,电介质传感器无法工作的环境。
www.opsensing.com