设计温度为多少度是低温容器
‘壹’ 压力容器的设计温度是指
设计温度是容器在正常工作情况下,设定的元件的金属温度(沿元件金属截面的温度平均值)。设计温度与设计压力一起作为设计载荷条件。对于大多数容器来说,设计温度是对应于设计压力的温度。然而,对于一台给定的容器来说,存在一个最高的设计温度和一个最低的设计温度。
压力容器
‘贰’ 压力容器设计
压力容器设计的基本步骤:
以稳压罐的设计为例,对容器设计的全过程进行讲解。
首先,我们根据用户提出的、在压力容器规范范围内双方签署的具有法律约束力的设计技术协议书,该协议书也可以经双方同意共同修改、完善,以期达到产品使用最优化。
根据稳压罐的设计技术协议,我们知道了容器的最高工作压力为1.4MPa,工作温度为200℃,工作介质为压缩空气,容积为2m3,要求使用寿命为10年。这些参数就是用户提供给我们的设计依据。
有了这些参数,我们就可以开始设计。
一. 设计的第一步
就是要完成容器的技术特性表。除换热器和塔类的容器外,一般容器的技术特性表包括
a 容器类别
b 设计压力
c 设计温度
d 介质
e 几何容积
f 腐蚀裕度
j 焊缝系数
h 主要受压元件材质等项。一般我所图纸上没有做强行要求写上主要受压元件材质
一. 确定容器类别
容器类别的划分在国家质量技术监督局所颁发的《压力容器安全技术监察规程》(以下简称容规)第一章第6条(p7)有详细的规定,主要是根据工作压力的大小(p75)、介质的危害性和容器破坏时的危害性来划分(p75)。本例稳压罐为低压(<1.6MPa)且介质无毒不易燃,则应划为第Ⅰ类容器。
另:具体压力容器划分类别见培训教材 p4 1-11
何谓易燃介质见 p2 1-6
介质的毒性程度分级见 p3 1-7
划分压力容器等级见 p3 1-9
二. 确定设计压力
我们知道容器的最高工作压力为1.4MPa,设计压力一般取值为最高工作压力的1.05~1.10倍。
至于是取1.05还是取1.10,就取决于介质的危害性和容器所附带的安全装置。
介质无害或装有安全阀等就可以取下限1.05,否则就取上限1.10。
本例介质为无害的压缩空气,且系统管路中有泄压装置,符合取下限的条件,则得到设计压力为
Pc=1.05x1.4
=1.47MPa。
另:什么叫设计压力?计算压力?如何确定?见p11 3-1
液化石油气储罐设计中,是如何确定设计压力的?
三. 确定设计温度
一般是在用户提供的工作温度的基础上,再考虑容器环境温度而得。
比如为华北油田设计的容器,且在工作状态无保温的情况下,其工作温度为30℃,其冬季环境温度最低可到-20℃,则设计温度就应该按容器可能达到的最恶劣的温度确定为-20℃。《容规》附件二(p77)提供了一些设计所需的气象资料供参考。本例取设计温度为200℃即可。
四. 确定几何容积
按结构设计完成后的实际容积填写即可。
五. 确定腐蚀裕量
由所选定受压元件的材质、工作介质对受压元件的腐蚀率、容器使用环境和用户期待的使用寿命来确定,实际上应先选定受压元件的材质,再确定腐蚀裕量。
《容规》第三章表3-3(p23)和GB150第3.5.5.2节(p5)对一些常见介质的腐蚀裕量进行了一些规定。工作介质对受压元件的腐蚀率主要按实测数据和经验来确定,受使用环境影响很大,变数很多,目前无现成的数据。
一般介质无腐蚀的容器,其腐蚀裕量取1~2mm即可满足使用寿命的要求。本例取腐蚀裕量为2mm。
另:什么叫计算厚度、设计厚度、名义厚度、有效厚度?何谓最小厚度?如何确定?见p12 3-5 3-6
六. 确定焊缝系数
焊缝系数的标准叫法叫焊接接头系数,GB150的3.7节(p6)对其取值与焊缝检测百分比进行了规定。
具体取值,可以按《容规》第85条(p43)所规定的10种情况选择:
其焊缝系数取1,即焊接接头应进行100%的无损检测,其他情况一般选焊缝系数为0.85。
本例选焊缝系数为0.85。
七. 主要受压元件材质的确定
材质的确定在满足安全和使用条件的前提下,还要考虑工艺性和经济性。
GB150第8页材料的使用有严格的规定,对这些规定的掌握是非常必要的。比较常用的材料有Q235-B(Q235-C)16MnR和0Cr18Ni9这几种材料
1. 0Cr18Ni9一般用于低于-20℃的低温容器和
对介质有洁净要求的容器,如低温分离器、氟利昂蒸发器等;
2. 16MnR一般用于对安全性要求较高、使用Q235-B时壁厚较大的容器,如油、天然气等。
3. Q235-B使用最广也最经济,GB150第9页对其使用条件作了详细规定:
● 规定设计压力≤1.6MPa;
● 钢板使用温度0℃~350℃;
● 用于壳体时厚度不得大于20mm,且不得用于高度危害的介质。
就本例来说,其使用压力、温度和介质都符合Q235-B的条件,唯有厚度还未知,若超过了20mm则只能使用16MnR,本例就暂定使用Q235-B。
当然啦,如果我们按以下:
●规定设计压力≤2.5MPa;
●钢板使用温度不得超过0℃~400℃;
●用于壳体时厚度不得大于30 mm,且不得用于高度危害的介质。
Q235-B与Q235-C的主要区别也就是冲击试验温度不同,前者为在温度20℃下做 V型冲击试验;后者为在0℃ 时做V型冲击试验
完成了技术特性表,下一步就是容器计算了。
◆ 确定容器直径
计算时首先要确定容器直径。除非用户有要求,一般取长径比为2~5,很多情况下取2~3就可以了。
本例要求容器的几何容积为2m3 。
我们只得先设定直径,再根据此直径和容积求出筒体高度,验算其长径比。设定的直径应符合封头的规格。
我们设定为800mm,查标准JB/T4746《钢制压力容器用封头》附录B,得知此规格的封头容积为0.0796 m3,
则:
筒体高度为 3664mm,
长径比为 3664/800=4.58
若加上封头的高度,可知其长径比太大,我们先前设定的直径太小。
再设定直径为1000mm,查得封头容积为0.1505立方。
得到:
筒体高度为 2164mm
长径比为 2164/1000=2.16
比较理想,则我们确定本例稳压罐的内直径为1000mm,筒体高度圆整为2200mm。
有了容器直径,即可按照GB150公式5-1(p26)计算出厚度为8.30mm。此厚度即为计算厚度,其名义厚度为计算厚度与腐蚀裕量之和,再向上圆整到钢板的商品厚度。本例腐蚀裕量为2mm,与计算厚度之和为10.30mm,与之最接近的钢板商品厚度为12mm,故确定容器厚度为12mm,并且此值符合Q235-B对厚度不超过20mm的要求。
另外本例若选择腐蚀裕量为1mm经济性会好得多,可以思考一下为什么
至此,我们已得到容器外形。
◆ 下一步该是按用户要求和《容规》的规定配置各管口的法兰和接管。
容器上开孔要符合GB150第8.2节(p75)的规定,一般都要进行补强计算,除非满足GB150第8.3节(p75)的条件,则可不必再计算补强。
选择接管时应尽量满足GB150第8.3节的条件,其安全性和经济性都最好,避免增加补强圈。
本例要求的管口直径都在GB150第8.3节的范围内,因此进气口和出气口接管选择φ57x5的无缝钢管,排污口选择φ25x3.5的无缝钢管。法兰按HG20592选择1.6MPa的突面(RF)板式平焊法兰(PL)。
◆ 法兰及其密封面型式
法兰及其密封面型式是设计协议书中要求的,
1. 压力等级必须高于设计压力;
2. 其材质一般与筒体相同;
3. 确定管口在壳体上的位置时,在空间较为紧张的情况下,一般也应保持焊缝与焊缝间的距离不小于50mm,以避免焊接热影响区的相互叠加。
本例选定进气口、出气口距上下封头环焊缝各300mm。因本例稳压罐工作温度为200℃,故其工作状态下必定有保温层,考虑到保温层厚度以及螺栓安装的需要,选定法兰密封面到筒体表面的距离为150。
◆ 检查孔
除了用户要求的管口外,《容规》第45条(p26)还对检查孔的设置进行了规定。
本例直径为1000mm,按规定必须开设一个人孔。查《回转盖平焊法兰人孔》标准JB580-79 压力容器与化工设备实用手册p614,选择压力1.6MPa级、公称直径450的人孔,密封型式为A型,其接管为φ480x10。因人孔开孔较大,所以人孔一定要使用补强圈补强,查《补强圈》标准JB/T4736,补强圈外径为760,厚度一般等同于筒体。人孔的位置以方便出入人孔为原则,应尽量靠近下封头。本例选定人孔中心距下封头环焊缝500。
立式容器的支座一般选用支承式支座JB/T4724(压力容器与化工设备实用手册第599页),
另:锻件的级别如何确定?对于公称厚度大于300mm的碳素钢和低合金钢锻件应选用何级别?
◆ 管口表的填写
◆ 技术要求的书写
1 本设备按 GB150-1998《钢制制压力容器》进行制造、试验和验收,并接受国家质量技术监督局颁发的《压力容器安全技术监察规程》的监督。
2 焊接采用电弧焊,焊条牌号:焊接采用J422。
3 焊接接头型式和尺寸除图中注明外,按HG20583的规定进行施焊:A 类和 B 类焊接接头型式为DU3; 接管与筒体、封头的焊接接头型式见接管表;未注角焊缝的焊角尺寸为较薄件的厚度;法兰的焊接按相应法兰标准的规定。
4 容器上的 A 类和 B 类焊接接头应进行射线探伤检查,探伤长度不小于每条焊缝长度的20%,其结果应以符合JB4730 规定中的 Ⅲ 级为合格。
5 设备制造完毕应进行水压试验,试验压力为 MPa。
6 管口、支座及铭牌架方位按本图。
7 设备检验合格后,外表面涂 C06-1 铁红醇酸底漆两道,再涂 C04-42 灰色醇酸磁漆一道。
8 设备检验合格后,内部清理干净,各管口用盲板封严。
10 设备筒体的计算厚度为 mm,封头计算厚度为 mm。
建议使用年限为10年。
交个朋友,刚好我也要用,我是过程装备与控制的.先给你
‘叁’ 压力容器低温冲击试验
【低温压力容器试验中应注意的问题】由于低温压力容器的应用日趋普遍及其特殊性,应从设计温度的确定、选材、结构设计、焊接和检验等各个环节严格要求。
根据GB150一1998钢制压力容器》附录C《低温压力容器》的规定,低温压力容器是指容器的设计温度低于或等于-20℃,以及由于环境温度的影响,壳体的金属温度低于或等于-40℃,在工艺操作过程中容器的壁温处于低温状态下的一种压力容器。低温低应力工况系指壳体或其受压元件的设计温度虽然低于或等于-40℃,但其环向应力小于或等于钢材标准常温屈服点的1/6,且不大于50MPa时的工况。低温低应力工况不适用于钢材标准抗拉强度下限值大于540MPa的低温容器。
低温压力容器在设计时应注意的问题:在工程上,通常采用以下几种方法来确定处于低温压力容器的设计温度。
(1)金属温度系指元件金属沿截面厚度的温度平均值,元件金属两侧的流体温度不同时,通过流体脊指仿与壁面间的给热、污垢热阻以及元件金属的热量传导,利用传热计算可以求得元件两侧金属表面的温度。但是,由于很多介质的传热系数K值和给热系数a值难以查出,在工程计算中,多采取经验值代入。
(2)当受压元件与工作介质直接接触,且外部有良好的保冷或保温设施时,或容器内流。温度接近环境温度,或传热条件使得壳体壁温接近物料温度,则此时壳体元件的金属温度可以取为物料温度。
(3)对于已有生产运行的同类容器,可以通过实际测定确定受压元件的金属温度。
(4)对于露天或无采暖的厂房内(事故停车所特设的容器及意外降温和停车后的自然温除外)放置的容器,其壳体的金属温度应该考虑在低温环境中受到的气温条件的影响。
1、设计温度的确定:设计温度高于-20℃和设计温度低于-40℃,在设计、选材、制造等方面是截然不同的。所以,设计温度的确定是低温压力容器设计中一项至关重要的因素,应从设备在相应设计温度与同时存在的设计压力一起作为设计载荷条件,和是否受环境温度影响、介质的温度以及有无保温或保冷等方面,去做具体问题分析。
2、低温压力容器的选材:低温压力容器的选材应考虑设计温度、材料的低温冲击韧性、壁厚、使用时的拉应力水平、焊接及焊后热处理等问题。还必须要根据具体用途、具体使用条件、特定的安全重要性提出必要的、多于GB150规定或高于GB150合格指标的补充要求。
(1)低温容器受压元件用钢材应是镇静钢,承受载荷的非受压元件也应该是具有相当韧性且焊接性能良好的钢材。
(2)一般低温用钢都要求正火处理,正火处理除可以细化晶粒外,还可以减少由于终轧温度和冷却速率不同而引起的显微组织不均匀,可降低钢材无塑性转变温度。
(3)对低温用碳素钢和低合金钢各类钢材,除因材料截面尺寸太小,无法制取5mmX10mmX55mm的小尺寸试样的情况外,必须按HG20585标准要求进行低温夏比V型缺口冲击试验。低温容器用钢的冲击试验温度应低于或等于壳体或其受压元件的最低设计温度,当壳体或其受压元件使用在低温低应力工况时,钢材的冲击试验温度应低于或等
于最低设计温度加-40℃。
(4)对于低温容器用碳素钢和低合金钢壳体钢板,当钢板厚度8>20mm时,应按JB/T4730逐张进行超声波检测,合格级别樱纤为I级。
(5)奥氏体高合金钢螺栓材料使用在-100℃以下时,可以考虑经应变硬化处理以保证需要的强度。奥氏体高合金钢使用在-196℃以下,还应考虑某些附加材料试验要求。
(6)使用温度在-100℃到-70℃区间的低合金钢材料,目前国内尚无适用的钢材产品,可以选用国外的适用材料,或是直接选用奥氏体高合金钢。
(7)焊接材料应选逗正用与母材成分和性能相近或相同的具有较好低温韧性的材料,对焊条电弧焊焊条应选用低氢碱性焊条,对于埋弧焊焊剂应选用碱性或中性焊剂。低温容器用焊条应按相应焊条标准按批进行药皮含水量或熔敷金属扩散氢含量复验。圆滑过渡。
(8)在结构上应避免焊缝的集中和交叉。
(9)容器焊有接管及载荷复杂的附件,需焊后消除应力而不能整体进行热处理时,应考虑部件单独热处理的可能性。
(10)焊缝的结构设计:A类焊缝应采用双面对接焊,或采用保证焊透、与双面焊具有同等质量的单面对接焊。B类焊缝也应采用与A类焊缝相同的全焊透对接焊缝,除非结构限制不得已时,允 许采用不拆除垫板的带垫板单面焊。C,D类焊缝,原则均要求采用截面全焊透结构。
对于一般平焊法兰(指管端与法兰环内孔表面成搭接接头)的截面非全焊透结构,规定仅用于压力较低(设计压力不大于1.OMPa)、较高温度(设计温度不低于一3090)的场合,且标准抗拉强度下限值低于540MPa的材料。
3、低温压力容器的结构设计:在结构设计中要注意消除结构的应力集中,消除尖角,要有足够的韧性。为此在设计中要特别注意以下几个问题:
(1)结构尽可能简单,减少焊接件的拘束程度。
(2)结构各部分截面应避免产生过大的温度梯度。
(3)结构拐角和过渡应减少局部的应力集中以及截面尺寸和刚度的急剧变化。
(4)容器元件的各个部分(包括接管与壳体的连接)所形成的T形接头、角接接头焊缝和各类角焊缝,以及接管、凸缘端部都应修磨成圆角,使其内、外拐角均成圆滑过渡。
(5)容器的鞍座、耳座、支腿应设置垫板或连接板,避免直接与容器壳体相焊。垫板或连接板按低温用材考虑。
(6)容器与非受压元件或附件的连接焊缝应采用连续焊。
(7)接管补强应尽可能采用整体补强或厚壁管补强,若采用补强板,应为截面全焊透结构。
4、低温压力容器的焊接:
(1)低温压力容器施焊前应按JB4708进行焊接工艺评定试验,包括焊缝和热影响区的低温夏比V型缺口冲击试验。
(2)应严格控制焊接线能量。在焊接工艺评定所确认的范围内,选用较小的的焊接线能量,以多道施焊为宜。
(3)不得在母材的非焊缝区内引弧,焊接接头(包括对接接头和角接接头)应严格避免焊接缺陷,如弧坑或焊接成形不良,不得有未焊透、未熔合、裂纹、气孔、咬边等缺陷,同时尽量减小余高,不得有凸形角焊缝。要求焊缝表面呈圆滑过渡,不应有急剧形状变化。在低温条件下钢材对结构处或缺陷处的应力集中敏感性加大,从而加大了低温脆性破坏倾
向。
(4)焊后消除应力处理可以减小接头区域内的焊接残余应力,从而降低了在低温条件下的脆断倾向。
(5)每台低温压力容器都应制备产品焊接试板。
5、检验:
(1)对于A,B类对接接头,符合下列情况之一者应做100%射线或超声检测:
容器设计温度低于-40℃;
容器设计温度虽高于或等于一40℃,但接头厚度大于25mm;
根据“容规”划为第三类的压力容器;
根据设计压力和介质的燃、爆、毒性等工作条件由设计文件规定作100%检测的容器。
(2)作局部射线或超声检测的对接接头,其检测长度不少于50%接头总长,且不少于250mm。
(3)对下列焊接接头作表面磁粉或渗透检测:对符合第1条容器的焊接接头,而无法进行射线或超声检测者;对于要求做100%射线或超声检测的容器,其全部C,D类焊接接头的各种焊缝以及受压元件与非受压元件的连接焊缝。
6、其他:低温容器液压试验时的液体温度应不低于壳体材料和焊接接头的冲击试验温度(取高者)。
‘肆’ 低温储罐制造采用的什么标准
当设计温度低于-20℃时,属低温压力容器.
目前我国没有专门的“低温压力容器制造采用什么标准”,中国的JB4732都不划分低温与常温的温度界限.
本人认为其基本大法为:
1、《压力容器安全技术监察规程》;
2、《钢制压力容器》(GB150-1998)
3、 JB4732《钢制压力容器分析设计标准》.
4、GB3531《低温用压力容器钢板》
因为:GB150对“低温低应力工况仿乱”作了定义,系指在低温操作条件下,其环向应力≤钢材标准常温屈服点的六分之一,且<50MPa时的工况;在“低温低应力工况” ,若设计温度加上50℃后并庆高于-20℃,则不必遵循低温压力容器的有关规定;若设计温度调整后低于或等于-20℃时,按调整后的设计温度执行低温压力容器的有关规定.冲击试验温度也≤调整后的设计温度.;“低温低应力工况”不适用于钢材标准抗拉强度下限值大于540MPa的低温容器;:“1.2 本标准适用的设计温度范围按钢材允许的使用温度确定.”;等论述,并有《 低温压力容器用碳素钢和低合金钢锻件》(JB 4727-94)的附件.
另外,我国目前有:
JB/T4734-2002《铝制焊接容器》是国内第一个内容完整(包括设计、选材、制造和检验)的铝制压力容器标准.包括了压力容器和常压容器.也包含了全铝和衬铝两种焊制容器.设计压力≤8MPa,使用温度下限为-269℃.
JB/T4755《铜制压力容器》,标准的重点为材料和制造,由于铜制压力容器的结构形式、强度计算与钢相似,该部分内容均参照GB150.其焊接工艺评定和产品焊接试板部分均引用有关规定和标准只对铜材的特殊要求作出补充规定.该标准的制定将进一步提高铜制压力容器的设计、制造和使用水平.该标准适用于设计压力≤35MPa,设计温度按铜材及其复合钢板允许的使用温度确定.通常使用温度不低于-198℃时对铜材及焊接接头没有特殊要求,当使用温度低于 -198℃时应保证仍具有良好的拉伸断后伸长率.
JB/T4756《镍及镍合金制压力容器镍及镍绝大握合金制压力容器》,标准的重点为材料和制造,由于镍及镍合金制压力容器的结构形式、强度计算与钢相似,该部分内容均参照GB150.其焊接工艺评定和产品焊接试板部分均引用有关规定和标准只对铜材的特殊要求作出补充规定.该标准的制定将进一步提高镍及镍合金制压力容器的设计、制造和使用水平.该标准适用于设计压力≤35MPa,设计温度按铜材及其复合钢板允许的使用温度确定.通常使用温度不低于-198℃时对镍及镍合金材料及焊接接头没有特殊要求,当使用温度低于 -198℃时应保证仍具有良好拉伸断后伸长率.
而在《钢制压力容器》(GB150-1998)中有6.1.1 制造低温压力容器用的材料应符合第4章的要求.6.1.2 制造低温压力容器受压元件用钢板应由容器制造单位按4.7.4条要求复验低温冲击韧性.
中国的JB4732都不划分低温与常温的温度界限.
《低温压力容器用9%Ni钢板》(GB24510-2009)
本标准规定了低温压力容器用9%Ni钢板的订货内容、尺寸、外形、重量及允许偏差、技术要求、试验方法、检验规则、包装、标志和质量证明书等.
本标准适用于制造液化天然气(LNG)储罐、液化天然气(LNG)船舶等低温压力容器用厚度不大于50mm 的9%Ni钢板.
‘伍’ 低温冷库,高温冷库,中温冷库是以什么标准分类的
低温冷库,高温冷库,中温冷库是按照冷库的设计温度来分类的。分类标准如下:
高温冷库(恒温库):冷藏设计温度为5~15℃。
中温冷库(冷藏库):冷藏设计温度为(5~-5℃)。
低温冷库(冷冻库):冷藏设计温度为-18~-25 ℃。
除过这上面的三种冷库外,根据冷库设计温度可以划分为超低温库和速冻库。划分标准如下:
超低温冷库(深冷库):冷藏设计温度为-45~-60℃。
速冻库(急冻库):冷藏设计温度为-35~-40℃。
‘陆’ 压力容器按工作温度怎样区分 a,低温容器 ≤
关于压力容器温度的区分相关信息如下: 容器按壁温分为常温、中温、高温、低温四种。常温是-20~200度;高温一般是高于420度;中温是在常温和高温之间的容器;低温是低于-20度的容器。
压力容器(yā lì róng qì),英文:pressure vessel,是指盛装气体或者液体,承载一定压力蚂基的密闭设备。为了更有效地实施科学管理和安全监检,我国《压力容器安全监察规程》中根据工作压力、介质危害性及其在生产中的作用将压力容器分为三类。
并对每个类别的压力容扮指器在设计、制造过程,以及检验项目、内容和方式做出了不同的规定。压力容器已实施进口商品安全质量许可制度,未取得进口安全质量许可证书的商品不准进口。
制造工艺
1、压力容器制造工序一般可以分为:原材料验收工序、划线工序、切割工序、除锈工序、机加工(含刨边等)工序、滚制工序、组对工序、焊接工序(产品焊接试板)、无损检测工序、开孔划线工序、总检工序、热处理工序、压力试验工序、防腐闷缺谨工序。
2、不同的焊接方法有不同的焊接工艺。焊接工艺主要根据被焊工件的材质、牌号、化学成分,焊件结构类型,焊接性能要求来确定。首先要确定焊接方法,如手弧焊、埋弧焊、钨极氩弧焊、熔化极气体保护焊等等,焊接方法的种类非常多,只能根据具体情况选择。
确定焊接方法后,再制定焊接工艺参数,焊接工艺参数的种类各不相同,如手弧焊主要包括:焊条型号(或牌号)、直径、电流、电压、焊接电源种类、极性接法、焊接层数、道数、检验方法等等。
‘柒’ 高低温冷库是怎样划分的
高低温冷库的划分:
高温冷库(恒温库):冷藏设计温度为5~15℃。
中温冷库(冷藏库):冷藏设计温度为(5~-5℃)。
低温冷库(冷冻库):低温冷库定义:冷藏设计温度为-18~-25 ℃。
超低温冷库(深冷库):冷藏设计温度为-45~-60℃。
速冻库(急冻库):冷藏设计温度为-35~-40℃。
看是储运什么物品,如:一般海鲜类的要求在速冻后-18度以下储运为合格,如果是新鲜蔬菜水果等就要在小于4度大于0度的范围,要求是不一样。 但是作为一辆冷藏车来说就要有很宽的调节范围以便用来储运不同的物品。 能够在-30到10度之间可调就可以适应不同的食品储运要求。
只有正确的使用和操作好冷藏车,才能够保证货物的完好运送和保存;
因为冷藏车是专门用于对温度敏感的产品所使用的,因而温度的保证是冷藏车的关键。如果使用或操作不当,都会导致货物不能在完好的状态下保存或运送。
常见的几种冷机如下:
国产凯达;国产凯雪;进口冷王;进口开利机组等其他.
(7)设计温度为多少度是低温容器扩展阅读:
冷藏车是指用来维持冷冻或保鲜的货物温度的封闭式厢式运输车,冷藏车是装有制冷机组的制冷装置和聚氨酯隔热厢的冷藏专用运输汽车,冷藏车可以按生产厂家、底盘承载能力、车厢型式来分类。
冷藏车常用于运输冷冻食品(冷冻车),奶制品(奶品运输车)、蔬菜水果(鲜货运输车)、疫苗药品(疫苗运输车)等
‘捌’ 压力容器,高手帮我解答和点评下
X 是常压标准JB4735,不是压力容器标准GB150
X 是低温压力容器,它是低温容器的一种
√
X 压力芦含神容器产品技术文件要随压力容器保存直到报废,在制造单位需要保存7年的是压陪亏力容器射线探伤的底片
X 应该标注,比如老郑封头
√
X 泄露实验是对特殊情况的要求比如液氯,介质为极度、高度危害或不允许轻微泄露的容器,必须进行泄露试验
√
√
累了,完成。