宇宙的温度是多少
㈠ 宇宙间的最高温度是多少
分类: 教育/科学 >> 科学技术
问题描述:
我的儿子问我,我不知道呀,有谁能告诉我呀.
解析:
在整个宇宙当中,温度无处不存在。无论在地球上还是在月球上,也无论是在赤热的太阳上还是在阴冷的冥王星上,这一切无不由于空间位置的不同而存在着温度的差别。例如,太阳表面温度是6000℃,而处于太阳系里离太阳较远的冥王星的表面温度却只有-240℃。又如,传说中的牛郎星与织女星,在夜里的星空中,它们只是闪烁的小亮点,而怎能让人一下子想到牛郎星的表面最高温度竟达8000℃,织女星的表面最高温度竟达10000℃,真可谓是"热恋之星".
正因为宇宙中各行星的冷热不同,才决定着生命的存在与否。想想看,如果人类要到太阳去,还没到达早已化为灰焚了;再想想,如果人类要到阴冷的冥王星去,恐怕人的第一次呼吸还没完成就早已在寒冷的温度当中冻成了冰尸。
当然,在这样莫大的宇宙中,只要位置适当,生命是完全可以存在的。现在的地球就是典型一例。地球上生命的诞生有人说是偶然的,其实它也是必然的。第一个有生命细胞的诞生,那是蕴含着"造物主"多少心思啊,其中温度是必不可少的因素之一。因为只有在适宜的温度下,化学反应才能正常进行物质分解或重组,才有了今天这个美丽的世界山川、河流、绿树、红花……才有了生命的诞生。
温度是分子平均功能的标志,它决定一个系统是否与其它系统处于热平衡的物理量,它的基本特征在于一切互为热平衡的系统都具有相同的温度。如当温度较低时,分子、原子振动的速度很小,无法挣脱分子、原子也变小,分子之间距离就较大,此时物质为液态。但随着温度的不断升高,分子运动十分激烈,分子间的距离也变大,此时物质为气体。整个世界这么精彩就是因为这些不同的分子,原子在不同的温度下变化而来的。
在人们的现实生活中,通常比较熟悉的温度范围是—90℃到61℃即地球表面的气温变化范围,其实在宇宙中还有很多关于温度的东西已被人类得知,但我们不熟悉而已,本文将为各位读者提供一部份从最冷的—273.15摄氏度(绝对0℃)到最热的5.1亿摄氏度的知识让大家了解一下。
—273.15℃ 绝对零度
绝对零度,即绝对温标的开始,是温度的极限,相当于—273.15℃,当达到这一温度时所有的原子和分子热量运动都将停止。这是一个只能逼近而不能达到的最低温度。人类在1926年得到了0.71K的低温,1933年得到了0.27K的低温,1957年创造了0.00002K的超低温记录。目前,人们甚至已得到了距绝对零度只差三千万分之一度的低温,但仍不可能得到绝对零度。
如果真的有绝对零度,那么能不能检测到呢?有没有一种测量温度的仪器可以测到绝对零度而不会干扰受测的系统(受测的系统如果受到干扰原子就会运动,从而就不是绝对零度了)?确实,绝对零度无法测量是依靠计算得出来的,研究发现温度降低时,分子的活动就会变慢,那么依靠计算得出,当降到绝对零度时,分子是静止的,所以就得出了绝对零度的概念。
—270.15℃ 宇宙微波背景辐射
宇宙微波背景辐射是"宇宙大爆炸"所遗留下的布满整个宇宙空间的热辐射,反映的是宇宙年龄在只有38万年时码好弊的状况,其值为接近绝对零度的3K.
—260℃ 星际尘埃的温度
在寒冷的宇宙空间,星际尘埃的温度可低达—260℃。
—250℃袜碰 低温火箭发动机
印度空间研究组织试验成功了一种低温火箭发动机,该发动机的燃料温度为—250℃。在其带动下,发动机冲压涡轮的最高速度达到4万转每分钟,标志着印度空间研究水平跨越了一个具有重要意义的里程碑。
—240℃ 冥王星
从冥王星上看太阳,太阳只是一个闪亮的光点,它从太阳上所接受到的光和热,只有地球从太阳得到的几万分之一,因此,冥王星上是一个十分阴冷黑暗世界。最高温度是—210℃,最低温度是—240℃。除冥王星以外海王星也可达到—240℃。
科学家1898年在实验室第一次得到了—240℃的低温,这时,氢气变成了液氢。
—230℃ 非金属的磁性
非金属材料在低温下也能表现出磁性,这种磁体适用于制造新型计算机存储设备,绝缘设备等。但这类材料在温度超过一定限度时就会失去磁性。目前,临界温度最高的非金属磁体在—230℃左右,即使施加高压也仅能提高到—208℃。
—220℃ 天王星迟族
天王星自转一次的"天王星日"约为17小时14分,因为有快速的自转而和木星一样地呈现东西向的明显条纹。因为距离太阳遥远,天王星大气层云上端温度约在—220℃,表面显淡蓝色。
—210℃ 鲸鱼座τ的尘埃盘
鲸鱼座τ是除了太阳以外离地球最近的类太阳恒星,距离太阳仅约12光年,亮度约3.5等,以肉眼就可以看到。它周遭有尘埃与彗星组成的尘埃盘,这个尘埃盘的直径比太阳系稍大一些,温度仅—210℃左右,可能是因为小行星和彗星彼此碰撞的碎片所形成。
-200℃ 土卫六星
到目前为止,我们尚未发现有任何地外生命存活的迹象。但卡西尼号正在探索的土卫六可能是一个生命起源的实验室。
由于表面温度为—200℃,土卫六不是一个能产生生命的地方,但是它的浓密的大气层中含有许多碳氢化合物。它们通过太阳的紫外光可产生化学反应。光化学反应能产生有机分子,这些碳基化合物是产生生命的第一步。但是土卫六太冷了,以致于无法迈出下一步。它就像是一个深度冻结了的地球。在50亿年后,它将会得到产生生命所需要的热量,因为那时太阳将膨胀成一个熊熊发光的红巨星。只是那时由于太阳已进入生命的暮年,生命大约已经来不及产生了。
-190℃ 低温下出现许多奇怪现象
低温世界就像魔术师,各种物质出现奇妙变化。空气在-190℃时会变成浅蓝色液体,如果把鸡蛋放进去,它会产生浅蓝色的荧光,摔在地上会像皮球一样弹起来;鲜艳的花朵放进去,会变成玻璃一样光闪闪,轻轻的一敲发出"叮当"响,重敲竟破碎了,从鱼缸捞出一条金鱼头朝下放进液体中,金鱼再取出来就变得硬梆梆,晶莹透明,仿佛水晶玻璃制成的"工艺品",再将这"玻璃金鱼"放回鱼缸的水中,奇怪的是金鱼竟然复活了,又摆动着轻纱一般的尾巴游了起来。
-180℃ "梦的纤维"——凯英拉纤维
凯英拉纤维的性能赛过钢铁和合金,被人们称为"梦的纤维"这种液晶纤维的强度是钢的5倍,铝的10倍,玻璃纤维的3倍,能在—180℃左右连续使用。它主要用作飞机的结构材料、子午线轮胎、船体、运动器具、防护服装和缆绳等。例如:美国波音飞机公司的767型客机采用了3吨凯英拉纤维与石墨纤维混杂的复合材料,使机身重量减轻了1吨,与波音727飞机相比,燃料消耗节省30%.
-170℃ 生命存活的低温极限
这样的温度已有最简单的微生物能够生存了。观察表明,大肠杆菌、伤寒杆菌和化脓性葡萄球菌均能在—170℃下生存。
-160℃ 水星
离太阳最近的水星,它和太阳的平均距离为5790万公里,是太阳最近的行星。它表面温差最大,因为没有大气的调节,向阳面的温度最高时可达430℃,但背阳面的夜间温度可降—160℃,昼夜温度差近600℃,这可是一个处于火和冰间的世界。温度变化如此巨大,水星上是不可能有生命的。
—150℃ 木星
木星是太阳系中的第五个行星,木星为太阳系最大的行星,其内部可以放入1300个地球,密度较低,其重量仅为地球的317倍。木星的成份绝大部分是氢和氦。木星离太阳较远,表面温度达—150℃;木星内部散放出来的热是它从太阳接受热的两倍以上。
—140℃ 液氮低温加工橡胶品
橡胶制品是很难降解的高分子弹性材料,将它粉碎到具有广泛用途的精细胶粉十分困难。目前,国际上利用废轮胎工业化生产精细胶粉的方法主要采用液氮低温冷冻法,即将橡胶在—130℃到—140℃的温度下冷冻成玻璃化状态再加以粉碎,就能轻易获得优良的精细胶粉。
㈡ 太空中的温度大约是多少
太空中的温度是温度为-270.3℃。
地球大气层以外的宇宙空间,大气层空间以外的整个空间。物理学家将大气分为5层:对流层(海平面至10千米)、平流层(10~40千米)、中间层(40~80千米)、热成层(电离层,80~370千米)和外大气层(电离层,370千米以上)。
地球上空的大气约有3/4在对流层内,97%在平流层以下,平流层的外缘是航空器依靠空气支持而飞行的最高限度。某些高空火箭可进入中间层。人造卫星的最低轨道在热成层内,其空气密度为地球表面的1%。
在1.6万千米或冲搏高度空气继续存在,甚至在10万千米高度仍有空气粒子。从严格的科学观点来说,空气空间和外层空间没有明确的界限,而是逐渐融合的。
联合国和平利用外层空间委员会科学和技术小组委员会指出,当前还不可能提出确切和持久的科学标准来划分外层空间和空气空间的界限。近些年来,趋向于以人造卫星离开地面的最低高度(100~110)千米为外层空间的最低极限界限。
(2)宇宙的温度是多少扩展阅读
太空的科学探秘
1、太空站
太空站又称为“空间站”、“轨道站”或“航天站”,是可供多名宇航员巡航、长期工作和居住的载人航天器。
在太空站运行期间,宇航员的替换和物资设备的补充可以由载人飞船或航天飞机运送,物资设备也可由无人航天器运送。
1971年前苏联发射了世界上第一个太空站———“礼炮”1号,此后到1983年又发射了“礼炮”2—7号。1986年前苏联又发射了更大的太空站“和平”号。美国1973年利用“阿波罗”登月计划的剩余物资发射了“天空实验衫祥室”太空站。
2、太空旅游
太空旅游是基于人们遨游太空的理想,到太空去旅游,给人提供一种前所未有的体验,最新奇和最为刺激人的是可以观赏太空旖旎的风光,同时还可以享受失重的味道。
而这两种体验只有太空中才能享受到,可以说,此景只有天上有。太空游项目始于2001年4月30日。第一位太空游客为美国商人丹尼斯蒂托,第二位太空游客为南非富翁马克·沙特尔沃思,第三位太空游客为美国人格雷戈里·奥尔森。聂海胜就是其中的一位。
3、太空行走
太空行走(Walking in space)又称为出舱活动,即航天员在载人航天器之外或在月球和行星等其他天体上完成各种任务的过程。
它是载人航天的一项关键技术,是载人航天工程在轨道上安装大型设备、进行科学实验、施放卫星、检查和维修航天器的重要手段。要实现太空行走这一目标,需要诸多的特殊技术保障。
㈢ 宇宙中最高的温度能达到多少目前最高的温度是多少
宇宙形成后10负36次方秒,宇宙温度达到10000亿亿亿℃,而人类观测到的最高温度是伽马射线爆,几分钟释放的能量可以达到太阳1万亿年释放的能量总和。
目前的理论认为,只有在宇宙大爆炸的普朗克时间(5.4×10^-44秒),温度才有达到过普朗克温度。目前在宇宙中已知最高温度是在双中子星合并过程中产生的,温度为3500亿度。而人类制造的最高温度比这还高,大型强子对撞机把高速运动的质子和原子核相撞,产生的最高温度可达10万亿度。
具体温度有多高不好说,但仅从人类观测的结果来说,短短几秒释放一万亿年太阳释放的能量综合,顺便提一下太阳寿命也才只有百十亿年,温度可以达到1万亿摄氏度以上,甚至高到难以想象。
㈣ 太空有没有温度呢如果有,那是多少呢
太空中的温度非常低。根据对宇宙微波背景辐射的测量,宇宙的温度为2.725K,约为零下270.4摄氏度。但即便如此,在太空中工作的国际空间站并不担心温度过低,相反,我们需要考虑如何为空间站加热。从宏观上看,温度最直观的表现是物体的冷热程度,但从科学角度看,冷和热是相对的,存在一定的主观性。所以我们要在微观层面上谈一谈。
以上就是小编针对问题做得详细解读,希望对大家有所帮助,如果还有什么问题可以在评论区给我留言,大家可以多多和我评论,如果哪里有不对的地方,大家也可以多多和我互动交流,如果大家喜欢作者,大家也可以关注我哦,您的点赞是对我最大的帮助,谢谢大家了。
㈤ 宇宙最高的温度是多少度最低的温度是多少度
地球上的平均温度为15摄氏度,火星上的平均温度为-63度,金星上的平均温度为462度,太阳表面的平均温度为5500度,织女星表面的平均温度为9300度,那么,宇宙的平均温度会是多少度?
有些人可能会想,太空是真空的,谈论温度没有意义。但事实上,太空不是完全空无的真空。虽然太空中缺乏物质,但不缺乏能量辐射,也就是光。既然有热辐射,那么,太空也就会有温度。
太阳产生的光会朝着空间的各个方向源源不断地发射出去,宇宙中还有无数像太阳这样能够发光的恒星,所以宇宙中充满了光。但宇宙实在太大了,空间非常空旷,即便有数以亿计的恒星在发光,但不足以让整个宇宙变热。
根据威尔金森微波各向异性探测器(WMAP)在9年里的观测结果,目前宇宙微波背景辐射的温度比绝对零度高了大约2.73度,相当于-270.42摄氏度,这就是整个宇宙的平均温度。宇宙微波背景辐射的发现非常关键,这是宇宙当年经历过超高温的一大证据,有力地支持了宇宙大爆炸理论。
㈥ 宇宙最高温度是多少
宇宙最高温度是510000000℃,约比太阳的中心热30倍,是人类所能产生的最高温。该温度是美国新泽西的普林斯顿等离子物理实验室中的托卡马克核聚变反应堆利用氘和氚的等离子混合体于1994年5月27日创造出来的。
“宇宙大爆炸”时产生的温度上限——就是最后某一粒子存在的最高温度“Tmax”,也知道了宇宙的温度范围——就是从“绝对零度”到“最后某一粒子存在的最高温度‘Tmax’”。
(6)宇宙的温度是多少扩展阅读:
在整个宇宙当中,温度无处不存在。无论在地球上还是在月球上,也无论是在赤热的太阳上还是在阴冷的冥王星上,这一切无不由于空间位置的不同而存在着温度的差别。例如,太阳表面温度是6000℃,而处于太阳系里离太阳较远的冥王星的表面温度却只有-240℃。
又如,传说中的牛郎星与织女星,在夜里的星空中,它们只是闪烁的小亮点,而怎能让人一下子想到牛郎星的表面最高温度竟达8000℃,织女星的表面最高温度竟达10000℃,真可谓是“热恋之星”。
㈦ 你知道宇宙的温度达到了多少度吗
对于温度相信大家不会陌生,我们每天,每时每刻都在跟温度打交道。那么温度是如何诞生的呢?其实从宇宙大爆炸的那一刻,温度也就出现了。在人类的认知里,地球表面的平均温度是15摄氏度,火星表面的平均温度为零下63摄氏度,而金星上的温度可达460摄氏度,太阳表面的温度达到了5500摄氏度。
如此多的不同温度,让我们认知到这个世界唤冲,这个宇宙完全就是一个温度的世界,任何地方,任何物质都会有自己一个温和辩歼度。包括智慧生命人类,自身也有一个温度,那就是37摄氏度左右。当外界的温度远低于或远高于这个温度的温度,人体就会感到不舒服,甚至危及到生命。
既然宇宙每一个天体,每一种物质都有自己的温度,那么作为浩瀚的宇宙空间温度达到了多少度呢?可能很多人觉得,宇宙有大量的恒星存在,而恒星又是一个强大的热辐射能源,所以宇宙灶戚在如此多的恒星加持下,温度应该是比较高的,那么事实真的如此吗?
根据威尔金森微波各向异性探测器(WMAP)在9年里的观测结果,目前宇宙微波背景辐射的温度比绝对零度高了大约2.73度,相当于-270.42摄氏度,这就是整个宇宙的平均温度。宇宙微波背景辐射的发现非常关键,这是宇宙当年经历过超高温的一大证据,有力地支持了宇宙大爆炸理论。
当然,由于人类现在的科技相对于宇宙来说,还是非常落后,所以我们对宇宙的认知也是非常有限的。而且有关宇宙的很多理论,现在也无法得到足够的证据来支持。很多宇宙理论都只是一种猜测,想要让猜测成为现实,就需要我们有更强大的科技实力去不断寻找证据。
而要做到这些,人类要真正成为星际文明才有希望。那个时候,我们对于宇宙的研究探索就不仅仅是通过天文望远镜的模糊观测,而是可以通过星际穿梭,快速到达目标位置,近距离得到真实的观测数据。我们期待着这一天的到来。
㈧ 宇宙温度有多高
在茫茫浩瀚的宇宙中,有无数像太阳这野虚野样的恒星,它们无时不刻都在燃烧;在整个宇宙当中,温度无处不在。誉模根据科学家的估计,一颗具有较大质量的恒星的核心部位最高温度能达到90亿摄氏度。在我们已知的数据里,金星上的温度可达460摄氏度,而太阳表面的温度达到了5500摄氏度之高。可见,宇宙中的星球完全是一个温度的星体。
既然在宇宙中,每一个星体都有温度,那整个宇宙的温度是多少呢?据现有的资料记载,宇宙的平均温度已经达到了绝对零度,这是一个什么概念呢?“绝对零度”是热力学的最低温度,热力学温标的单位是K开尔文,绝对零度就是约为-273.15℃或-459.67℉。然而,绝对零度是无法达到的,只是理论的下限值。
绝对零度有多可怕?探索宇宙的半个多世纪以来,我么并没有在宇宙的任何一个地方发现这种“绝对零度”。跟爱因斯坦相对论预言的一样,任何有质量的物体都无法达到光速。当温度下降,接近于绝对零度时,分子的运动几乎停滞。扩大到宇宙的层面,真正的绝对零度会让宇宙中的所有运动都停止。
说到这里,有人会问了宇宙中这么多恒星,为什么宇宙的温度不升高反而降低呢?为什么恒星无法加热宇宙呢?其实在数量庞大的宇宙空间中,虽然恒星数量多,但架不住宇宙无边无际。超高温度来源的“太阳”,作为一个天体,而它加热的不过是在它所处太阳系附近的宇宙。宇宙直径930亿光年这个数字,我们根本无法想象它的庞大性,所以距离太阳系越远的恒星就没有产生不了高温度,因此整个宇宙根本不会受到温度的较大影响。
所以科学家们认为,导致宇宙温度这么低的原因,是宇宙本身过于庞大,无穷无尽。还有一点,在宇宙中温度的概念就跟宇宙尘埃一样稀薄。恒星对外散发的,是由于电磁脉冲,只有跟物质之间产生作用,才会形成温度。在宇宙的真空状态下,根本无法加热宇宙空间。就算是在地球周围,如果一个宇航颂喊员从空间站出来,不穿宇航服,那这个宇航员很快就会因真空而丢掉性命。
全文结束
㈨ 宇宙中最高的温度是多少最低温度是多少度
宇宙中最高的温度是多少?芦谨裂最低温度是多少度?
最高温度和最低温度都只是理论上的一个数据。这个数据就是普朗克温度和绝对零度。量子力学认为,宇宙最高温度为10^32K,也就是亿亿亿亿K。这个“K”代表开氏度,就是热力学温度,如果与“ ”(摄氏度)比较,0 K(是零K,不是OK)就相当于-273.15 ,这就是绝对零度;而100 则为373.15K。也就是说开氏度减掉273.15就是摄氏度。
普朗克温度和绝对零度都只是一个理论存在的温度,也是人类能够理解的最高温度和最低温度,高于这个温度和低于这个温度都没有意义。量子力学认为,在宇宙大爆炸的普朗克时间,也就是大爆炸开始的10^-43秒,1000亿亿亿亿亿分之一秒时,其温度为普朗克温度,即10^32K,这以后,宇宙渐渐冷却,再也没有出现过这个温度。
而绝对零度,是热力学的最低温度,是粒子动能低到量子力学最低点时物质的温度,是存在于理论中的下限值。我们知道,物质的温度取决于其内部原子、分子等粒子的平均动能,一个物体粒子动能越高,温度就越高,当粒子动能达到最低点,不能再低时,就是绝对零度。
根据热力学第三定律,绝对零度永远也无法达到,因为一个绝对零度的空间,完全没有粒子振动,而空间的存在是以物质为前提的,没有物质也就没有空间,因此绝对零度的空间为零,零空间就是虚无。
目前人类观测到的最高温度。恒星中心一直在源源不断爆发着核聚变,而恒星是宇宙的主要可见物质,占可见质量的99%以上。恒星表面温度从几千K到数万K,乃至数十万K不等,中子星表面温度可达1000亿K。质量越大的恒星,温度就越高,恒星中心温度也是如此。
太阳这样的恒星,中心温度只有1500万K,但到了演化后期,激发氦核聚变的温度需要1亿K。比太阳质量大的恒星,核聚变不断上升到更高层次,也就是按照元素周期表的排列序数,从氢核聚变,经历氦、碳、氧、氖、钠、铝、镁、硅、硫、氩气、钙、钛、铬、锰等一路演化,一直到26号元素铁结束。每一层次核聚变结束,恒星就会向中心坍缩,从而形成更高压力和温度,激发更高层次的核聚变。大质量恒星核心温度可以高达30亿K,从而完成铁元素之前的所有核聚变,在核心聚合成一个铁核。
比太阳质量大8倍的恒星就可以完成这一系列的核聚变,最终发生超新星大爆发,爆发的温度可以达到几百亿甚至上千亿K,从而完成比铁更重元素的合成。但这还不是目前宇宙能够晌扰得到的最高温度,更高温度是伽马射线暴创造的。
伽马射线暴是超大质量恒星爆发、黑洞或中子星相撞等极端事件中形成的,最强能量的伽玛暴比超新星爆发能量还要强数百倍,可以再现宇宙大爆炸1/1000秒时万亿度高温。这可能是迄今可能观测到的宇宙自然界最高温度了。
但目前已知存在的最高温度是人类制造出来的。2010年11月8日,科学家们利用位于瑞士和法国边境的欧洲大型强子对撞机,模拟138亿年前宇宙大爆炸的瞬时过程。这次实验是用两束铅离子束,在27千米的地下环形轨道中以相反速度加速,当它们接近光速时让它们相撞,相撞的瞬间产生了10万亿K的高温,再现了宇宙大爆炸百万分之几秒的场景,从而可以观察这一温度下产生“夸克—胶子等离子体”的过程,印证宇宙大爆炸理论预测。
尽管这个温度只存在一瞬,但却被精密仪器记录下来。这是迄今为止人类观测到存在于现实世界的最高温度。
人类制造出的宇宙最低温度。宇宙最低温度迄今也是人类在实验室制造出来的,是NASA科学家团队在国际空间站上创造出来的。他们在地面做观测冷原子实验时,由于地球重力影响,得到极低温度冷原子态只能观测到几分之一秒,瞬间就消失了。于是他们将冷原子实验室(CAL)送到国际空间站,在微重力环境,创造出了更低温度,冷原子云固定观测时间可达到10秒,成为至今被观测最长时间的玻色-爱因斯坦凝聚态。
这是迄今人类创造的最低温度,为-273.149999999999 ,即0.000000000001K,就是万亿分之一K。
此前人造最低温度也是科学家在实验室创造的,达陪闭到0.00000017K。后来科学家们又把这个温度降低到0.5nK(纳开),就是0.0000000005K。这是一个由德国、美国、奥地利等国科学家组成的科研小组,利用磁阱技术实现铯原子的玻色-爱因斯坦凝聚态(BEC)的实验过程中,创造这一纪录的。
广袤的宇宙空间温度极低,在远离天体的空旷处,温度低到3K以下。这是宇宙大爆炸后经历138亿年冷却的残留热辐射,通俗地说就是残留余烬,这种残留电磁辐射充满整个宇宙,温度只有2.725K,因此又称为3K宇宙背景辐射。
但这并不是宇宙自然界最低温度。1979年,科学家们发现距离我们约5000光年,位于半人马座方位有一个领结状的原行星云,命名为布莫让星云,又叫回力棒星云,科学家们通过用各种射线望远镜探测表明,那里的温度低到1K,是迄今发现自然界存在的最低温度。
现在还有一种说法,认为在宇宙大尺度网状结构之间,有许多被称为“空洞”的冷斑点,有的空洞尺度达到数十上百亿光年,那里面没有星系,也没有暗物质,形成的原因有多种说法,有科学家认为这种空洞里的温度更低,不过至今还没有严谨数据支撑,无法定论。
小结:目前已知的最高温度为10万亿K,最低温度为万亿分之一K,这些温度都是人工制造出来的。
为了解答这几个问题,首先要了解一下温度的本质。表面上,温度表征物体的冷热程度。本质上,温度表征物体的组成粒子的热运动剧烈程度。
物质可能的最低温度
理论上,当所有的粒子停止运动时(处于量子力学的最低点),物体将会达到可能的最低温度,即绝对零度。绝对零度在开氏温标上表示为0 K,在摄氏温标上表示为-273.15 。
然而,为了达到绝对零度,不仅需要原子停止运动,而且还包括原子的所有组成。绕原子核运动的电子需要停止运动,原子核中的质子和中子需要停止相互作用,夸克以及任何更基本的结构都要停止活动。由于量子力学效应,这是不可能的,所以绝对零度无法达到。从另一方面看,任何空间中都存在能量和热量,必然会与物质进行交换,所以绝对零度只能无限逼近,不可能达到。
目前,通过激光冷却和磁蒸发冷却技术,科学家获得的最低温度达到了100 pK(10^-10 K, 273.149999999900 )。物质在这种极低的温度下将处于玻色-爱因斯坦凝聚态,它们会表现出奇特的行为,例如,超流动性和超导现象。
物质可能的最高温度
物质可能的最高温度为普朗克温度,其值约为1.417 10^32 K。由于粒子的运动速度上限为光速,所以当粒子速度接近光速时,物体的温度接近普朗克温度。如果温度超过普朗克温度,物理定律将不复存在。
目前,通过大型强子对撞机的粒子对撞实验,科学家获得的最高温度为10万亿开尔文,尽管这个温度比太阳的中心温度高了60万倍,但仅为普朗克温度的一千亿亿分之一。
首先,温度简单来说与微观粒子运动的速度息息相关,微观粒子运动越距离,物体的温度就越高。根据不确定性原理,任何粒子的运动不可能停下来,所以温度有一个下限,我们都知道那是绝对零度,也就是大约领下273摄氏度。而任何微观粒子的运动速度都不可能超越光速,所以物体的温度也有上限,不可能无限高,上限就是普朗克温度,大约1.4乘以10的32次方K。
普朗克温度是根据现有物理学计算出来的理论值,它是宇宙大爆炸发生一个普朗克时间后的温度,一个普朗克时间非常短,大约5.4乘以10的负44次方秒,也是物理学上可测量的最小时间单位,任何小于普朗克时间的时间都没有意义,而我们对宇宙的认知也是从大爆炸发生后一个普朗克时间开始的,也可以认为一个普朗克时间之前的宇宙没有意义。
那么目前已知的宇宙中最高温度是多少呢?超乎我们的想象!
太阳的核心温度能达到1500万摄氏度,这样的高温已经让很多人惊叹不已,甚至无法想象。但太阳的核心温度与中子星碰撞时产生的温度相比简直太渺小了,这个温度能达到3500亿摄氏度,敢想象吗?
目前人类能制造出来的最高温度是在大型强子对撞机里产生的,微观粒子的撞击能产生高达10万亿度的高温,不要担心如此高温会把对撞机熔化,那只是微观层面粒子的运动速度的体现形式,因为碰撞时的粒子速度都接近光速。而且碰撞是一瞬间的,不会有任何影响。