变频器眼位频率多少合适
Ⅰ 变频器的频率设置多大合适是不是以电流不过载为限频率高对泵有何
要看电机的最高转速是多少,实际使用时不要超过电机的最高转速,因为超过电机的最高转速电机轴承受不了,机械部分容易损坏。普通三相异步电机,2极的不超过3000转,4极的不超过1500转,6极的不超过1000转。专用变频电机铭牌上都有最高转速的标识,有的6000转,有的8000转,有的10000转,不一样。
电机频率为50HZ,变频器设置一样为50(这是默认值),一般使用需要设置的只有(加减速时间、电机额定功率、电流、转速)。
Ⅱ 变频器的调节频率范围是多少
看变频器的,一般好像是0-600Hz,不过一般变频器低频段难以调速(5Hz以下),当然矢量型变频器性能更强些。
Ⅲ 变频器的最大频率、最小频率、运行频率是什么,怎么设定
变频器的最大频率、最小频率是需要通过更改变频器参数中对应的参数,更改其中的数值就可以了。运行频率一般是根据实际需要来实时进行修改的,也可以让变频器处于闭环运行模式下,变频器会根据实际需求,自动来调整变频器的运行频率,像恒压供水,就是比较常用的一个闭环控制模式。
一、最大/小频率
最小频率是指让你电机能够产生驱动负载转矩的频率,设置0完全没有意义。具体就要看你变频器的性能了,低于2基本不可能,一般5差不多。
最高频率,根据你的应用需求,你最快需要多快的速度,前提是电机功率足够,在恒功率时也能产生足够驱动负荷的转矩,顺便说一句,在这个阶段,转矩是随着转速的提高不断减小的,说白点就是,速度越快,带负载能力越小。
因此,最小频率5左右比较合适,最大频率是满足调速要求即可。这个只是初步的解决方案,具体还要根据负荷的情况调整。
二、运行频率给定方式
1、操作器面板给定
操作器面板给定是变频器最简单的频率给定方式,用户可以通过变频器操作器面板上的电位器、数宇键或上升、下降键,来直接改变变频器的设定报率。
操作器面板给定的最大优点就是简单、方便,同时又具有监视功能,即能够将变频器运行时的电流、电压、转速等实时显示出来。
如果选择键盘数宇键或上升、下降键给定,则由于是数字最给定,精度和分辨率非常高。如果选排操作器上的电位器给定,则属于模拟量给定,精度稍低,但由于无需像外接电位器的模拟量输入那样另外接线,实用性非常高。
2、外部电位器给定
就是通过从变频器外部输入的电位器来调节频率
3、多功能输入端子给定
通过变频器的多功能输入端子来改变变频器的设定频率值,该端子可以外接按钮或PLC、继电器的输出点。
4、模拟量给定
就是通过变频器提供的RS485接口或PLC给定。模拟量给定是通过变频器的模拟量端子从外部输入模拟量信号进行给定,并通过调节模拟量的大小来改变变频器的输出频率
Ⅳ 变频器的频率一般是多少怎么调试
输出一般默认是0到50HZ,可以通过面板或者外接电位器调节频率
Ⅳ 变频器的载波频率设置多少较为合适
载波频率对变频器输出电流的影响:
(1)运行频率越高,则电压波的占空比越大,电流高次谐波成份越小,即载波频率越高,电流波形的平滑性越好;
(2)载波频率越高,变频器允许输出的电流越小;
(3)载波频率越高,布线电容的容抗越小(因为Xc=1/2πfC),由高频脉冲引起的漏电流越大。
载波频率对电机的影响:
载波频率越高,电机的振动越小,运行噪音越小,电机发热也越少。但载波频率越高,谐波电流的频率也越高,电机定子的集肤效应也越严重,电机损耗越大,输出功率越小。
Ⅵ 变频器的输出频率精度是多少啊
拿三菱变频器来说吧!!!
三菱变频器三种频率输出方式:1 PU面板上的旋钮调节输出
2 多段速控制输出
3 模拟量(电流,电压)控制输出
在以上的控制频率中:
1 PU面板上的旋钮调节输出 和 2 多段速控制输出 的精度是0.1HZ。
3 模拟量(电流,电压)控制输出可以达到无级调速
Ⅶ 变频器最高频率是多少
变频器最高频率是500HZ。
变频器(Variable-frequency Drive,VFD)是应用变频技术与微电子技术,通过改变电机工作电源频率方式来控制交流电动机的电力控制设备。变频器主要由整流(交流变直流)、滤波、逆变(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成。变频器靠内部IGBT的开断来调整输出电源的电压和频率,根据电机的实际需要来提供其所需要的电源电压,进而达到节能、调速的目的,另外,变频器还有很多的保护功能,如过流、过压、过载保护等等。随着工业自动化程度的不断提高,变频器也得到了非常广泛的应用。
Ⅷ 变频器的通讯问题,变频器运行频率一般情况下是多少
问题不太明确,运行频率设定多少变频就运行到多少,误差1Hz左右。如果变频器辨识做的完美长期低速运行也行,接近零速点运行也行。变频频率一般是0--50Hz之间运行,变频电机还能高看额定。
Ⅸ 变频器的启动频率是多少HZ
对于数字控制的变频器,即使频率指令为模拟信号,输出频率也是有级给定。这个级差的最小单位就称为变频分辨率。 变频分辨率通常取值为0.015~0.5Hz.例如,分辨率为0.5Hz,那么23Hz的上面可变为23.5、24.0 Hz,因此电机的动作也是有级的跟随。这样对于像连续卷取控制的用途就造成问题。在这种情况下,如果分辨率为0.015Hz左右,对于4级电机1个级差为1r/min 以下,也可充分适应。另外,有的机种给定分辨率与输出分辨率不相同。
低压通用变频输出电压为380~650V,输出功率为0.75~400kW,工作频率为0~400Hz,它的主电路都采用交—直—交电路。其控制方式经历了以下四代。
第一代
1U/f=C的正弦脉宽调制(SPWM)控制方式:
其特点是控制电路结构简单、成本较低,机械特性硬度也较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到广泛应用。但是,这种控制方式在低频时,由于输出电压较低,转矩受定子电阻压降的影响比较显着,使输出最大转矩减小。另外,其机械特性终究没有直流电动机硬,动态转矩能力和静态调速性能都还不尽如人意,且系统性能不高、控制曲线会随负载的变化而变化,转矩响应慢、电机转矩利用率不高,低速时因定子电阻和逆变器死区效应的存在而性能下降,稳定性变差等。因此人们又研究出矢量控制变频调速。
第二代
电压空间矢量(SVPWM)控制方式:
它是以三相波形整体生成效果为前提,以逼近电机气隙的理想圆形旋转磁场轨迹为目的,一次生成三相调制波形,以内切多边形逼近圆的方式进行控制的。经实践使用后又有所改进,即引入频率补偿,能消除速度控制的误差;通过反馈估算磁链幅值,消除低速时定子电阻的影响;将输出电压、电流闭环,以提高动态的精度和稳定度。但控制电路环节较多,且没有引入转矩的调节,所以系统性能没有得到根本改善。
第三代
矢量控制(VC)方式:
矢量控制变频调速的做法是将异步电动机在三相坐标系下的定子电流Ia、Ib、Ic、通过三相-二相变换,等效成两相静止坐标系下的交流电流Ia1Ib1,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1、It1(Im1相当于直流电动机的励磁电流;It1相当于与转矩成正比的电枢电流),然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标反变换,实现对异步电动机的控制。其实质是将交流电动机等效为直流电动机,分别对速度,磁场两个分量进行独立控制。通过控制转子磁链,然后分解定子电流而获得转矩和磁场两个分量,经坐标变换,实现正交或解耦控制。矢量控制方法的提出具有划时代的意义。然而在实际应用中,由于转子磁链难以准确观测,系统特性受电动机参数的影响较大,且在等效直流电动机控制过程中所用矢量旋转变换较复杂,使得实际的控制效果难以达到理想分析的结果。
第四代
直接转矩控制(DTC)方式:
1985年,德国鲁尔大学的DePenbrock教授首次提出了直接转矩控制变频技术。该技术在很大程度上解决了上述矢量控制的不足,并以新颖的控制思想、简洁明了的系统结构、优良的动静态性能得到了迅速发展。该技术已成功地应用在电力机车牵引的大功率交流传动上。 直接转矩控制直接在定子坐标系下分析交流电动机的数学模型,控制电动机的磁链和转矩。它不需要将交流电动机等效为直流电动机,因而省去了矢量旋转变换中的许多复杂计算;它不需要模仿直流电动机的控制,也不需要为解耦而简化交流电动机的数学模型。
矩阵式交—交控制方式:
VVVF变频、矢量控制变频、直接转矩控制变频都是交—直—交变频中的一种。其共同缺点是输入功率因数低,谐波电流大,直流电路需要大的储能电容,再生能量又不能反馈回电网,即不能进行四象限运行。为此,矩阵式交—交变频应运而生。由于矩阵式交—交变频省去了中间直流环节,从而省去了体积大、价格贵的电解电容。它能实现功率因数为l,输入电流为正弦且能四象限运行,系统的功率密度大。该技术虽尚未成熟,但仍吸引着众多的学者深入研究。其实质不是间接的控制电流、磁链等量,而是把转矩直接作为被控制量来实现的。具体方法是:
1、控制定子磁链引入定子磁链观测器,实现无速度传感器方式;
2、自动识别(ID)依靠精确的电机数学模型,对电机参数自动识别;
3、算出实际值对应定子阻抗、互感、磁饱和因素、惯量等算出实际的转矩、定子磁链、转子速度进行实时控制;
4、实现Band—Band控制按磁链和转矩的Band—Band控制产生PWM信号,对逆变器开关状态进行控制。
矩阵式交—交变频具有快速的转矩响应(<2ms),很高的速度精度(±2%,无PG反馈),高转矩精度(<+3%);同时还具有较高的起动转矩及高转矩精度,尤其在低速时(包括0速度时),可输出150%~200%转矩。
VVC的控制原理:
VVC的控制原理是将矢量调制的原理应用于固定电压源PWM逆变器。这一控制建立在一个改善了的电机模型上,该电机模型较好的对负载和转差进行了补偿。
因为有功和无功电流成分对于控制系统来说都是很重要的,控制电压矢量的角度可显着的改善0-12HZ范围内的动态性能,而在标准的PWM U/F驱动中0-10HZ范围一般都存在着问题。
Ⅹ 变频器最高能调多大频率
变频器最大的功率的话,一般可以直接就是调到2000瓦的功率,这个可以直接就是从个人中心的系统设置里面进行一下调整就行了,非常的方便呢