测速雷达多少合适
① 雷达测速仪的测速范围和测速距离分别是什么意思
所有利用雷达波来侦测移动物体速度的原理,其理论基础皆源自于“都卜勒效应”,其应该也是一般常见的都卜勒雷达(Doppler Radar)
车子朝着无线电波方向前进,其反弹的率频会增加;
车子朝着无线电波传送的反方向前进,其反弹的率频会减小速度侦测装置(即警方所使用的测速雷达)所应用的原理,就是可以侦测到发射出现的无线电波,及反弹回来的无浅电波其间的频率变化。
由这两个不同频率的差值,便可以依特定的比例关系,而计算是该波所碰撞到物体的速度。当然,此种速度侦测装置可以将所侦测到的速度,转换为“公里/小时”或是“英哩/小时”。
测速范围和距离应该是一个概念吧。
② 交警流动雷达测速有何规定提示牌应该在多少米警示
速度表时速40,实际速度32.8-40为合格。
200米设置警告标志牌。
③ 雷达测速多少米有效
这是不一定 的 具体看她使用的甚么仪器
固定照相雷达的话 没有距离 只要超过线的话 就会 拍照
k频雷达 是直线测速 100米
证眼KA雷达 感应距离300米
④ 电子眼测速多少米才有效
一、电子眼测速都是20米内才有效,但是有些机器在五十米,一百米,三百米都能探测到,最大的甚至一千米,用的都是以前国防技术,只要不高速,都是100米以内。
二、固定式通常和摄像机联合使用构成抓拍系统。固定式在使用时会持续地产生探测电波,可是由于摄像机的要求和避免误报,雷达的触发区域距离会很近,通常在30米左右,但是并不代表探测电波只走30米,由于地面的反射,测速探测器会在更远的距离接收到电波并发出报警。对于手持式雷达并不持续地产生探测电波。
三、只有在按住按钮时才产生探测电波,可是手持式雷达采用的是模糊瞄准,所以需要更多的时间。另外,是探测器先接到电波,然后雷达才接到反射回来的电波并开始计算速度,可是测速雷达需要接受到8个连续的反射信号才能算出速度。
四、雷达的大约100米就拍照,感应线圈的,感应线圈与拍照系统很近,大约10米。
⑤ 交通测速雷达检测标准
有,交警使用的测速设备必须每年去计量局鉴定好坏和准确度,一般每个地方交警的测速雷达去省城计量局鉴定,鉴定的时候,雷达一般打成平行模式,发出的波形由接受器接受并显示出波形的参数,鉴定通过后发鉴定证书,现在的测速雷达发出的波形一般为8毫米窄波,每台测速雷达发出的波有固定的频率。
⑥ 测速雷达一般是一个车道配一台吗
胡说哦 微波(窄波)雷达可以覆盖多车道的 一般是一个车道一个窄波雷达 防止覆盖多车道时受到干扰
宽波束优点:
价格相对比较优惠 测速较为精确 可全天候工作,不受环境、天气影响 雷达体积小,易于集成
宽波的缺点:
速度相对于高性能的窄波束雷达较慢,一般在150~300ms,宽波束雷达的角度,校正不一致,只能取最小角度校正不带触发信号,抓拍位置不固定相邻车辆间干扰较
⑦ 雷达测速多少米能测着
雷达,将电磁能量以定向方式发设至空间之中,借由接收空间内存在物体所反射之电波,可以计算出该物体之方向,高度及速度.并且可以探测物体的形状,以地面为目标的雷达可以探测地面的精确形状。
雷达是利用微波波段电磁波探测目标的电子设备。雷达是英文radar的音译,意为无线电检测和测距。雷达概念形成于20世纪初。雷达的工作原理,是设备的发射机通过天线把电磁波能量射向空间某一方向,处在此方向上的物体反射碰到的电磁波;雷达天线接收此反射波,送至接收设备进行处理,提取有关该物体的某些信息(目标物体至雷达的距离,距离变化率或径向速度、方位、高度等)。雷达分为连续波雷达和脉冲雷达两大类。脉冲雷达因容易实现精确测距,且接收回波是在发射脉冲休止期内,所以接收天线和发射天线可用同一副天线,因而在雷达发展中居主要地位。测量距离实际是测量发射脉冲与回波脉冲之间的时间差,因电磁波以光速传播,据此就能换算成目标的精确距离。目标方位是利用天线的尖锐方位波束测量。仰角靠窄的仰角波束测量。根据仰角和距离就能计算出目标高度。当雷达和目标之间有相对运动时,雷达接收到的目标回波频率与雷达发射频率不同,两者的差值称为多普勒频率。从多普勒频率中可提取的主要信息之一是雷达与目标之间的距离变化率。当目标与干扰杂波同时存在于雷达的同一空间分辨单元内时,雷达利用它们之间多普勒频率的不同能从干扰杂波中检测和跟踪目标。雷达的优点是白天黑夜均能探测远距离的目标,且不受雾、云和雨的阻挡,具有全天候、全天时的特点,并有一定的穿透能力。因此,它不仅成为军事上必不可少的电子装备,而且广泛应用于社会经济发展(如气象预报、资源探测、环境监测等)和科学研究(天体研究、大气物理、电离层结构研究等)。星载和机载合成孔径雷达已经成为当今遥感中十分重要的传感器。其空间分辨力可达几米到几十米,且与距离无关。雷达在洪水监测、海冰监测、土壤湿度调查、森林资源清查、地质调查等方面显示了很好的应用潜力。
1922年美国泰勒和杨建议在两艘军舰上装备高频发射机和接收机以搜索敌舰。1924年英国阿普利顿和巴尼特通过电离层反射无线电波测量赛层的高度。美国布莱尔和杜夫用脉冲波来测量亥维塞层。1931年美国海军研究实验室利用拍频原理研制雷达,开始让发射机发射连续波,三年后改用脉冲波1935年法国古顿研制出用磁控管产生16厘米波长的撜习窖捌鲾,可以在雾天或黑夜发现其他船只。这是雷达和平利用的开始。1936年1月英国W.瓦特在索夫克海岸架起了英国第一个雷达站。英国空军又增设了五个,它们在第二次世界大战中发挥了重要作用。1937年美国第一个军舰雷达XAF试验成功。 1941年苏联最早在飞机上装备预警雷达。1943年美国麻省理工学院研制出机载雷达平面位置指示器,可将运动中的飞机柏摄下来,他胶发明了可同时分辨几十个目标的微波预警雷达。1947年美国贝尔电话实验室研制出线性调频脉冲雷达。50年代中期美国装备了超距预警雷达系统,可以探寻超音速飞机。不久又研制出脉冲多普勒雷达。 1959年美国通用电器公司研制出弹道导弹预警雷达系统,可发跟踪3000英里外,600英里高的导弹,预警时间为20分钟。 1964年美国装置了第一个空间轨道监视雷达,用于监视人造地球卫星或空间飞行器。1971年加拿大伊朱卡等3人发明全息矩阵雷达。与此同时,数字雷达技术在美国出现。
雷达按照用途可以分为军用雷达和民用雷达,军用雷达包括警戒雷达,制导雷达,敌我识别等;而民用雷达包括导航雷达,气象雷达,测速雷达等。
天气雷达是探测大气中气象变化的千里眼、顺风耳。天气雷达通过间歇性地向空中发射电磁波(脉冲),然后接收被气象目标散射回来的电磁波(回波),探测400多千米半径范围内气象目标的空间位置和特性,在灾害性天气,尤其是突发性的中小尺度灾害性天气的监测预警中发挥着重要的作用。
⑧ 测速雷达的频率是多少
不同功能,不同频道的测速雷达频率不同。
美国联邦电讯委员会 FCC (Fededral Communication Commission) 规定世界警用测速频道有 X, K,Ka,aser。
以下为各频道的频率:
S band:2.445 GHz (在 50'~60' 使用)
X band:10.525 GHz
K band:24.150 GHZ
Ka band:33.40~36.00 GHz (频宽 2.6 GHz, 又称 Super-Wind Ka band)
Laser: 红外线 800~1100nm
另外欧规频道有 Ku band : 13.450 GHz (杂志上广告所谓 Gatso 24 Ku 及 Gatso 33 Ku 两种测速频道,是所谓的K band 与 Ka band , 并不是新的 Ku 测速频道)K band: 24.125 GHz。
以下为各频道之下对应的部份测速系统:
X band: 10.525 GHz
(美制 Muni Quip 警车测速拦截雷达)
(美制 MPH K-55 警车测速拦截雷达)
(美制 Decatur Hunter,MV715 警车测速拦截雷达)
(美制 Decatur Hunter HH 手持雷达枪)
Ku band:13.450 GHz
(荷制 GATSO 13 流动雷达测速照相系统)
(荷制 GATSO 13 固定式雷达测速照相系统)
K band: 24.125 GHz
(荷制 GATSO 24 流动雷达测速照相系统)
(荷制 GATSO 24 固定式雷达测速照相系统)
(流动式 Traffipax Speedophot 测速照相系统)
(固定式 Traffipax Speedophot Station 测速照相)
24.150 GHz
(美制 MPH K-15 测速拦截)
(美制 Decatur MV724 警车测速拦截雷达)
(美制 Kustom Trooper,Hawk, 警车测速拦截)
(美制 Kustom KR-10SP,KR-11, 警车测速拦截)
(美制 Kustom Falcon,HR-12 手持雷达枪)
(澳制 AWA Fairey 流动雷达测速照相系统)
Ka band:33.30 GHz (荷制 GATSO 33 流动雷达测速照相系统)
33.80 GHz (美制 MPH Bee 36A 流动雷达测速系统)
34.30 GHz (瑞制 Multanova 6F 三脚架流动雷达测速系统)
34.60 GHz (美制 AST PR-100 流动测速照相系统)
34.70 GHz (美制 Stalker 手持雷达测速枪)
34.94 GHz (美制 Stalker 手持雷达测速枪)
36.00 GHz (美制 MPH Bee 36 流动雷达测速系统)
33.4~34.4 GHz (美制 Stalker 雷达测速系统)
34.2~35.2 GHz (美制 Stalker 雷达测速系统)
⑨ 流动测速雷达限速多少
不同地段、地区不同。但一般为60或80。
名词解释:
流动测速雷达
包括磁感应检测器,波频车辆检测器,视频检测器等。根据安装方式可以分为埋设式和悬挂式。
流动测速雷达工作原理
(1)磁感应检测器(多为埋设式检测系统)
环形线圈检测器是传统的交通检测器,是目前世界上用量最大的一种检测设备。车辆通过埋设在路面下的环形线圈,引起线圈磁场的变化,检测器据此计算出车辆的流量、速度、时间占有率和长度等交通参数,并上传给中央控制系统,以满足交通控制系统的需要。此种方法技术成熟,易于掌握,并有成本较低的优点。
这种方法也有以下缺点:a. 线圈在安装或维护时必须直接埋入车道,这样交通会暂时受到阻碍。b. 埋置线圈的切缝软化了路面,容易使路面受损,尤其是在有信号控制的十字路口,车辆启动或者制动时损坏可能会更加严重。c. 感应线圈易受冰冻、路基下沉、盐碱等自然环境的影响。d. 感应线圈由于自身的测量原理所限制,当车流拥堵,车间距小于3m的时候,其检测精度大幅度降低,甚至无法检测。
(2)波频车辆检测器(多为悬挂式检测系统)
波频车辆检测器是以微波、超声波和红外线等对车辆发射电磁波产生感应的检测器,这里主要介绍微波检测器(RTMS),它是一种价格低、性能优越的交通检测器,可广泛应用于城市道路和高速公路的交通信息检测。
RTMS的工作方式是:采用侧挂式,在扇形区域内发射连续的低功率调制微波,并在路面上留下一条长长的投影。RTMS以2米为一"层",将投影分割为32层。用户可将检测区域定义为一层或多层。RTMS根据被检测目标返回的回波,测算出目标的交通信息,每隔一段时间通过RS-232向控制中心发送。它的车速检测原理是:根据特定区域的所有车型假定一个固定的车长,通过感应投影区域内的车辆的进入与离开经历的时间来计算车速。一台RTMS侧挂可同时检测8个车道的车流量、道路占有率和车速。
RTMS的测量方式在车型单一,车流稳定,车速分布均匀的道路上准确度较高,但是在车流拥堵以及大型车较多、车型分布不均匀的路段,由于遮挡,测量精度会受到比较大的影响。另外,微波检测器要求离最近车道有3m的空间,如要检测8车道,离最近车道也需要7-9m的距离而且安装高度达到要求。因此,在桥梁、立交、高架路的安装会受到限制,安装困难,价格也比较昂贵。
(3)视频检测器
视频检测器是通过视频摄像机作传感器,在视频范围内设置虚拟线圈,即检测区,车辆进入检测区时使背景灰度值发生变化,从而得知车辆的存在,并以此检测车辆的流量和速度。检测器可安装在车道的上方和侧面,与传统的交通信息采集技术相比,交通视频检测技术可提供现场的视频图像,可根据需要移动检测线圈,有着直观可靠,安装调试维护方便,价格便宜等优点,缺点是容易受恶劣天气、灯光、阴影等环境因素的影响,汽车的动态阴影也会带来干扰。
解读:雷达探测器工作原理
雷达测速的原理是,道路旁装有雷达发射器,向道路来车方向发射雷达波束,再接收汽车反射的回波,通过回波分析测定汽车车速,如车速超过设定值,则指令相机拍摄,如晚间同时触发闪光灯。雷达探测器的原理很简单,就是接收到雷达信号后,马上报警,提示车主减速。
雷达探测器的软肋:
1、一些便宜的设备因频段和灵敏度的问题,反雷达测速的效果不好;效果好的又比较贵。
2、目前,很多城市采用路面下埋设速度感应线圈的方法来检测超速,此时雷达探测器完全无效。
3、此类设备只能应付雷达测速,而路口红灯电子眼完全无效。
⑩ 雷达测速限速多少
以马路旁边指示盘为准…一般高速120国道为70