压力容器保温层厚度多少合适
⑴ 压力容器设计
压力容器设计的基本步骤:
以稳压罐的设计为例,对容器设计的全过程进行讲解。
首先,我们根据用户提出的、在压力容器规范范围内双方签署的具有法律约束力的设计技术协议书,该协议书也可以经双方同意共同修改、完善,以期达到产品使用最优化。
根据稳压罐的设计技术协议,我们知道了容器的最高工作压力为1.4MPa,工作温度为200℃,工作介质为压缩空气,容积为2m3,要求使用寿命为10年。这些参数就是用户提供给我们的设计依据。
有了这些参数,我们就可以开始设计。
一. 设计的第一步
就是要完成容器的技术特性表。除换热器和塔类的容器外,一般容器的技术特性表包括
a 容器类别
b 设计压力
c 设计温度
d 介质
e 几何容积
f 腐蚀裕度
j 焊缝系数
h 主要受压元件材质等项。一般我所图纸上没有做强行要求写上主要受压元件材质
一. 确定容器类别
容器类别的划分在国家质量技术监督局所颁发的《压力容器安全技术监察规程》(以下简称容规)第一章第6条(p7)有详细的规定,主要是根据工作压力的大小(p75)、介质的危害性和容器破坏时的危害性来划分(p75)。本例稳压罐为低压(<1.6MPa)且介质无毒不易燃,则应划为第Ⅰ类容器。
另:具体压力容器划分类别见培训教材 p4 1-11
何谓易燃介质见 p2 1-6
介质的毒性程度分级见 p3 1-7
划分压力容器等级见 p3 1-9
二. 确定设计压力
我们知道容器的最高工作压力为1.4MPa,设计压力一般取值为最高工作压力的1.05~1.10倍。
至于是取1.05还是取1.10,就取决于介质的危害性和容器所附带的安全装置。
介质无害或装有安全阀等就可以取下限1.05,否则就取上限1.10。
本例介质为无害的压缩空气,且系统管路中有泄压装置,符合取下限的条件,则得到设计压力为
Pc=1.05x1.4
=1.47MPa。
另:什么叫设计压力?计算压力?如何确定?见p11 3-1
液化石油气储罐设计中,是如何确定设计压力的?
三. 确定设计温度
一般是在用户提供的工作温度的基础上,再考虑容器环境温度而得。
比如为华北油田设计的容器,且在工作状态无保温的情况下,其工作温度为30℃,其冬季环境温度最低可到-20℃,则设计温度就应该按容器可能达到的最恶劣的温度确定为-20℃。《容规》附件二(p77)提供了一些设计所需的气象资料供参考。本例取设计温度为200℃即可。
四. 确定几何容积
按结构设计完成后的实际容积填写即可。
五. 确定腐蚀裕量
由所选定受压元件的材质、工作介质对受压元件的腐蚀率、容器使用环境和用户期待的使用寿命来确定,实际上应先选定受压元件的材质,再确定腐蚀裕量。
《容规》第三章表3-3(p23)和GB150第3.5.5.2节(p5)对一些常见介质的腐蚀裕量进行了一些规定。工作介质对受压元件的腐蚀率主要按实测数据和经验来确定,受使用环境影响很大,变数很多,目前无现成的数据。
一般介质无腐蚀的容器,其腐蚀裕量取1~2mm即可满足使用寿命的要求。本例取腐蚀裕量为2mm。
另:什么叫计算厚度、设计厚度、名义厚度、有效厚度?何谓最小厚度?如何确定?见p12 3-5 3-6
六. 确定焊缝系数
焊缝系数的标准叫法叫焊接接头系数,GB150的3.7节(p6)对其取值与焊缝检测百分比进行了规定。
具体取值,可以按《容规》第85条(p43)所规定的10种情况选择:
其焊缝系数取1,即焊接接头应进行100%的无损检测,其他情况一般选焊缝系数为0.85。
本例选焊缝系数为0.85。
七. 主要受压元件材质的确定
材质的确定在满足安全和使用条件的前提下,还要考虑工艺性和经济性。
GB150第8页材料的使用有严格的规定,对这些规定的掌握是非常必要的。比较常用的材料有Q235-B(Q235-C)16MnR和0Cr18Ni9这几种材料
1. 0Cr18Ni9一般用于低于-20℃的低温容器和
对介质有洁净要求的容器,如低温分离器、氟利昂蒸发器等;
2. 16MnR一般用于对安全性要求较高、使用Q235-B时壁厚较大的容器,如油、天然气等。
3. Q235-B使用最广也最经济,GB150第9页对其使用条件作了详细规定:
● 规定设计压力≤1.6MPa;
● 钢板使用温度0℃~350℃;
● 用于壳体时厚度不得大于20mm,且不得用于高度危害的介质。
就本例来说,其使用压力、温度和介质都符合Q235-B的条件,唯有厚度还未知,若超过了20mm则只能使用16MnR,本例就暂定使用Q235-B。
当然啦,如果我们按以下:
●规定设计压力≤2.5MPa;
●钢板使用温度不得超过0℃~400℃;
●用于壳体时厚度不得大于30 mm,且不得用于高度危害的介质。
Q235-B与Q235-C的主要区别也就是冲击试验温度不同,前者为在温度20℃下做 V型冲击试验;后者为在0℃ 时做V型冲击试验
完成了技术特性表,下一步就是容器计算了。
◆ 确定容器直径
计算时首先要确定容器直径。除非用户有要求,一般取长径比为2~5,很多情况下取2~3就可以了。
本例要求容器的几何容积为2m3 。
我们只得先设定直径,再根据此直径和容积求出筒体高度,验算其长径比。设定的直径应符合封头的规格。
我们设定为800mm,查标准JB/T4746《钢制压力容器用封头》附录B,得知此规格的封头容积为0.0796 m3,
则:
筒体高度为 3664mm,
长径比为 3664/800=4.58
若加上封头的高度,可知其长径比太大,我们先前设定的直径太小。
再设定直径为1000mm,查得封头容积为0.1505立方。
得到:
筒体高度为 2164mm
长径比为 2164/1000=2.16
比较理想,则我们确定本例稳压罐的内直径为1000mm,筒体高度圆整为2200mm。
有了容器直径,即可按照GB150公式5-1(p26)计算出厚度为8.30mm。此厚度即为计算厚度,其名义厚度为计算厚度与腐蚀裕量之和,再向上圆整到钢板的商品厚度。本例腐蚀裕量为2mm,与计算厚度之和为10.30mm,与之最接近的钢板商品厚度为12mm,故确定容器厚度为12mm,并且此值符合Q235-B对厚度不超过20mm的要求。
另外本例若选择腐蚀裕量为1mm经济性会好得多,可以思考一下为什么
至此,我们已得到容器外形。
◆ 下一步该是按用户要求和《容规》的规定配置各管口的法兰和接管。
容器上开孔要符合GB150第8.2节(p75)的规定,一般都要进行补强计算,除非满足GB150第8.3节(p75)的条件,则可不必再计算补强。
选择接管时应尽量满足GB150第8.3节的条件,其安全性和经济性都最好,避免增加补强圈。
本例要求的管口直径都在GB150第8.3节的范围内,因此进气口和出气口接管选择φ57x5的无缝钢管,排污口选择φ25x3.5的无缝钢管。法兰按HG20592选择1.6MPa的突面(RF)板式平焊法兰(PL)。
◆ 法兰及其密封面型式
法兰及其密封面型式是设计协议书中要求的,
1. 压力等级必须高于设计压力;
2. 其材质一般与筒体相同;
3. 确定管口在壳体上的位置时,在空间较为紧张的情况下,一般也应保持焊缝与焊缝间的距离不小于50mm,以避免焊接热影响区的相互叠加。
本例选定进气口、出气口距上下封头环焊缝各300mm。因本例稳压罐工作温度为200℃,故其工作状态下必定有保温层,考虑到保温层厚度以及螺栓安装的需要,选定法兰密封面到筒体表面的距离为150。
◆ 检查孔
除了用户要求的管口外,《容规》第45条(p26)还对检查孔的设置进行了规定。
本例直径为1000mm,按规定必须开设一个人孔。查《回转盖平焊法兰人孔》标准JB580-79 压力容器与化工设备实用手册p614,选择压力1.6MPa级、公称直径450的人孔,密封型式为A型,其接管为φ480x10。因人孔开孔较大,所以人孔一定要使用补强圈补强,查《补强圈》标准JB/T4736,补强圈外径为760,厚度一般等同于筒体。人孔的位置以方便出入人孔为原则,应尽量靠近下封头。本例选定人孔中心距下封头环焊缝500。
立式容器的支座一般选用支承式支座JB/T4724(压力容器与化工设备实用手册第599页),
另:锻件的级别如何确定?对于公称厚度大于300mm的碳素钢和低合金钢锻件应选用何级别?
◆ 管口表的填写
◆ 技术要求的书写
1 本设备按 GB150-1998《钢制制压力容器》进行制造、试验和验收,并接受国家质量技术监督局颁发的《压力容器安全技术监察规程》的监督。
2 焊接采用电弧焊,焊条牌号:焊接采用J422。
3 焊接接头型式和尺寸除图中注明外,按HG20583的规定进行施焊:A 类和 B 类焊接接头型式为DU3; 接管与筒体、封头的焊接接头型式见接管表;未注角焊缝的焊角尺寸为较薄件的厚度;法兰的焊接按相应法兰标准的规定。
4 容器上的 A 类和 B 类焊接接头应进行射线探伤检查,探伤长度不小于每条焊缝长度的20%,其结果应以符合JB4730 规定中的 Ⅲ 级为合格。
5 设备制造完毕应进行水压试验,试验压力为 MPa。
6 管口、支座及铭牌架方位按本图。
7 设备检验合格后,外表面涂 C06-1 铁红醇酸底漆两道,再涂 C04-42 灰色醇酸磁漆一道。
8 设备检验合格后,内部清理干净,各管口用盲板封严。
10 设备筒体的计算厚度为 mm,封头计算厚度为 mm。
建议使用年限为10年。
交个朋友,刚好我也要用,我是过程装备与控制的.先给你
⑵ 保温层厚度要求是英语HOLD什么意思, 压力容器中,图纸上保温层厚度要求:HOLD.
hold 保持不变
图纸上这么写厚度是保持不变(你这稿图纸是不是修改过的后面几版的图纸,如果是肯定就是“保持不变”的意思,如是第一稿Version1/Rev.1图纸的话,再议)
⑶ 工业锅炉保温层厚度是否越厚越好
没必要太厚,再厚也是一样的作用,它靠的是真空层保温,防止红外线的辐射,只要超过一定厚度以后,薄点厚点都一样.
⑷ 保温层的最佳保温层厚度
我国寒冷地区的既有住宅建筑多属砖混结构,建筑围护结构热工性能差、墙体不保温,造成了全年采暖空调能耗居高不下。改进建筑围护结构热工性能是节能改造的关键,而外墙节能在建筑节能中占有非常重要的位置,本文采用生命周期法对北方地区的城市居民楼简单的平屋顶住宅建筑进行能耗模拟,通过比较几组具有不同厚度保温层的负荷指标,分析了保温层厚度对建筑负荷的影响,并确定了最佳的经济保温层厚度。保温层“经济厚度”的计算方法, 不但考虑了传热基本原理, 而且考虑了保温材料的投资费用、能源价格、贷款利率、导热系数等经济因素对保温层厚度的影响。据生命周期分析法的原理,利用单位面积围护结构(仅考虑屋顶)的采暖总耗费的数学模型,得出了一个简单的保温层经济厚度的计算式。最后通过几组数据进行验证,并推广为其他常见保温材料的最佳保温层厚度,进一步验证所得结论的正确与合理性。
目前,我国对房屋建筑的保温隔热性能提出了更高的要求,而目前很多城市居民楼尚且都还是简单的平顶屋。外保温是目前大力推广的一种建筑保温节能技术。外保温与内保温相比,技术合理,有其明显的优越性,使用同样规格、同样尺寸和性能的保温材料,外保温比内保温的效果好。外保温技术不仅适用于新建的结构工程,也适用于旧楼改造,适用于范围广,技术含量高;外保温包在主体结构的外侧,能够保护主体结构,延长建筑物的寿命;有效减少了建筑结构的热桥,增加建筑的有效空间;同时消除了冷凝,提高了居住的舒适度。根据一系列的节能政策、法规、标准和强制性条文的指导下,我国住宅建设的节能工作不断深入,节能标准不断提高,引进开发了许多新型的节能技术和材料,在住宅建筑中大力推广使用。但我国目前的建筑节能水平,还远低于发达国家,我国建筑单位面积能耗仍是气候相近的发达国家的3倍~5倍。北方寒冷地区的建筑采暖能耗已占当地全社会能耗的20%以上,且绝大部分都是采用火力发电和燃煤锅炉,同时给环境带来严重的污染。所以建筑节能还是本世纪我国建筑业的一个重要的课题。而同时墙体和屋顶作为建筑物的重要围护物件, 而其保温层厚度又是决定于建筑保温水平的重要参数,于是针对增强保温性能和节省热能损失和能源浪费,设计最佳保温层厚度有着重要的意义。 a. 假设研究对象为室内空气维持在设定适宜值的空调建筑。
b. 冬季建筑物采暖热负荷包括围护结构的耗热量和冷风渗透的耗热量,其中认为冷风渗透的耗热量不直接影响围护结构的热阻,而在计算保温层最佳厚度时只考虑屋顶耗热量的影响。
c. 假设屋顶结构体及保温层材料均匀,热传导系数是常数。
d. 室内温度和室外温度保持不变,且热传导过程已处于稳定状态。
e. 室内空气与围护结构内表面之间允许温度差摄氏4度,即在冬季平顶屋室内空气比内墙壁高4摄氏度。
f. 北方地区屋顶,夏季太阳日照下的表面温度最高达摄氏75度,冬季为摄氏零下40度。 模型中使用的主要参数说明
Q 单位面积的透过屋顶损失的热量,W/ m2
K 围护结构的传热系数,W/(m2·℃)
ΔT 室内外温差,℃。
Qn 年采暖耗热量,J/m2
HDD 采暖度日数,℃·d
Ri 由里到外屋顶结构材料的传热阻,m2·K/W
R 保温层的热阻,m2·K/W
di 由里到外屋顶结构材料的厚度,m
d 保温层的厚度
i 材料各层的导热系数,W·m/K
λ 保温层的导热系数,W·m/K
W 单位面积年采暖总费用,¥/ m2;
WT 单位面积保温层的投资费用,¥/ m2;
WN 单位面积年采暖耗热费用
WY 单位面积采暖年运行费用,¥/ m2·a
PWF 贴现系数
i 银行利润
I 现贴率
g 通货膨胀率
N 使用年限
P 单位体积保温材料的造价
C 单位时间的电价,¥/h
H 空调单位面积单位时间的发热量, J/h
η 采暖系统的总效率
Vi 采暖或降暖日数,d (1)厚度为d的均匀介质,两侧温度差为ΔT,则单位时间由温度高的一侧向温度低的一侧通过单位面积的热量Q与ΔT成正比,即: Q=kΔT, k为热传导系数,其中k= ,R为介质的传热阻
(2)PWF-贴现系数(Present Worth Factor),是把今后某一日期收到或支付的款项,折算为现值的过程。一元资金在不同时期的现值,叫做贴现系数,即将资金的将来值折算成现值。
(3)所谓采暖度日数 HDD(Heating Degree Days) 是指一段时间 ( 月、季或年 ) 日平均温度低于 65 °F(18.3 ° C) 的累积度数。如果日平均温度高于 65 °F,那么这一天无采暖度日数。
问题的分析
屋顶是建筑物的重要围护结构,为确保其保持室温,减少热损的功能. 尤其是在严寒地区,在保证寒冷地区冬季室内气温达到应有的标准的情况下,还需把其采暖费用作为重要考虑因素。保温层厚度是决定建筑保温水平的重要参数。一般随着保温层厚度的增加,围护结构的绝热性能提高,从而降低建筑负荷,采暖设备造价和采暖系统运行费用也相应降低;但同时,围护结构的建造费用也相应增加,因此,一定存在某一特定的保温层厚度,即经济厚度d ,使建筑物总费用(建造费用和经营费用之和)最小。于是考虑建立关于总费用W的目标函数,其包括保温层的投资费用和采暖耗热费用,其中对于采暖好热费用,考虑经济和节能,采用生命周期法,建立节能建筑设计的数学模型。建立关于保温层厚度d的关系式,得到计算经济厚度的关系,使得目标函数W最小,对应的即为最佳厚度d。由此得到最佳保温厚度,变换保温材料时只需替代导热系数,结合数据得到最佳保温材料。 在我们建立的模型中目标函数的总费用分两部分,即单位面积保温层的投资费用WT和单位面积采暖耗热费用WN。
WT的确定
已知单位体积保温层的造价P(包括保温材料费用,运输费用,施工费用,施工管理费用等),易得
其中d为保温层的厚度 (1)
年采暖耗热量费用
围护结构的传热系数K
根据公式概念有 , (2)其中Ri为围护结构建筑材料的传热阻,R为保温层的传热阻。
且易知R及Ri可由公式 算得,其中d为材料的厚度, 为材料的导热系数。
采暖度日数HDD
根据概念,为优化计算,冬季采暖度日数取为HDD20,即在一段时间的采暖日时间内平均温度低于20°C的累积度数。而在夏季降暖日数取为HDD25,即在一段时间内的降暖时间内高于25°C的累积度数,或者说如果日平均温度底于 25°C,那么这一天无降暖度日数。实际上也认为20°C与25°C分别为室内冬夏两季的适应温度。
对于采暖(降暖)度日数的计算方法有:
采用HDD=ΔT/2*V ,即取使室内达到适宜温度时最高温差的一半作为采暖(降暖)时间内的平均温差,其中ΔT为屋顶外表面的最低温度(最高温度)与室内冬季(夏季)适宜温度的差。V为采暖(降暖)总日数。
于是设屋顶外表面冬季最底温度为T1℃,夏季最高温度为T2℃ ,采暖日数为V1,降暖日数为V2,则有:
HDD20=(20-T1)/2*V1 (3)
HDD25=(T2-25)/2*V2 (4)
贴系数的确定
若g=i,PWF=(1+i)-1;
若g< i,则I=(i-g)/(1+g);
若g> i,则I=(g-i)/(1+i);
则有PWF=[1-(1+I)-N]/I (5)
单位面积年热损失Qn
单位面积年热损失用采暖度日数计算,一年分夏冬两个季节
(6)
=
3.4.6 单位面积采暖年运行费用WY
WY=
(7)
3.4.7单位面积年采暖耗热费用
(8)
综合(1)至(8)则有:
(9)
且如前所述,建筑采暖总费用W存在一个最小值d,其对应的厚度值即为所求最佳厚度d.
对W关于d求导数,有 ,求得
(10) 珍珠岩保温层的最佳厚度计算
以北方城市居民平顶屋住房为例,夏季取屋顶表面温度最高达摄氏75度,冬季为摄氏零下40度。在计算中选用格力 KFR-26GW/K(2658)D-N5空调,其参数: 功率:1P/制冷量:2600W。经换算得格力空调单位面积单位时间的发热量为H=0.72J/h。电价来源于长春供电局:C=0. 47 元/ kWh 。依据2007年的贷款利率为i=7.83%,通货膨胀率为g=4.8%,设定使用年限N=10.经计算可得:贴现系数PWF=8.58。认为年采暖日数为4个月,降暖日数为2个月,即有V1=120,V2=60,(单位:天)。
采用珍珠岩保温层,其导热系数在0.047-0.054(单位:w/m.k)之间,且造价为:186元/立方米,假定取 。取采(降)暖系统的总效率 。
表一:
屋顶围护结构 导热系数,W·m/K 厚度
mm 传热阻
m2·K/W
围护结构的传热系数
涂料 0.041 10 0.024
水泥砂浆 0.930 15 0.016
楼板 0.174 200 1.15
三毡四油防水材料 0.668 10 0.014
珍珠岩保温层 0.054 —— ——
图一:珍珠岩保温层d与采暖总费用W关系
在建筑采暖过程中,实际上保温层的投资费用WT随保温层厚度d的增加呈线性增大,而年采暖(降暖)所用耗热费用WN与保温层厚度d之间是非线性关系,开始随d增大而迅速降低,当d达到一定值时,WN变得平缓,从而导致单位面积年采暖总费用W随着d的增加,先是减小而后增长,在d=28.15mm时取得最小值,即为满足(10)式的珍珠岩最佳保温层厚度。
此计算也同样适于其他保温材料最佳保温厚度的确定,在后文将作详细说明。
不同材料的保温层最佳厚度的比较分析
各常见保温材料导热系数及单位造价,及计算所得最佳厚度和年采暖费用如下表二:
保温层材料 导热系数,W·m/K
单位造价,
元/立方米 最佳厚度,
mm
单位面积年采(降)暖总费用,元
聚氨酯泡沫
0.020 580 9.70 11266.00
珍珠岩保温层 0.054 186 28.15 10484.15
苯板 0.047 300 20.68
12419.24
挤塑板 0.025 430 12.59
8934.74
聚氨酯保温板 0.028 320 15.46 8158.05
聚乙烯PEF 0.038 320 18.00
9501.77
图二:不同材料保温层的最佳厚度
实际上保温效果:聚氨酯泡沫最好,挤塑板次之,苯板最差;
耐冷热性能:聚氨酯泡沫最好,挤塑板次之,苯板最差;
吸水率(性):挤塑板最低,聚氨酯次之,苯板最易吸水;
使用寿命:聚氨酯泡沫最长,挤塑板次之,苯板最差;
价格:聚氨酯泡沫最高,挤塑板次之,苯板最低;
聚氨酯现场发泡(喷涂)可直接现场喷涂成型(液体膨胀),成型、运输方便;其他两种板材需要运输、粘贴,较为麻烦且会存在一定的破损,有拼接缝存在。 对于室内外的温差计算,本文采用室内达到适宜温度时与外界最高温差的一半作为一段时间内的平均温差,然而实际上温度差随着外界气候、环境、时间等因素时刻发生变化。为此,对于室外温差的计算应考虑建立动态负荷和保温层厚度之间的关系式。
本文是是着重从经济学的角度来确定最佳保温层厚度。然而实际上保温层厚度的选择不仅关系到节约能源问题,同时也关系到环境保护问题,能源日益短缺的及国内乃至世界日趋严重的近日更加显得重要和必须。倘若在围护保温层材料的选择上考虑其对环境的影响,以及其所需消耗热源燃料产生的污染物量进行评估,使得选取的厚度在经济和环境的效益最佳。
在设置集中采暖的建筑物,其围护结构的传热阻除了根据技术经济的比较确定,而且要符合国家有关节能标准的要求,对于居住平顶屋等建筑围护结构的最小热阻应按一下计算公式计算的结构进行附加,其最小的传热阻按一下计算确定:
式中 Rmin——围护结构最小传热阻(m2·K/W)
ti——冬季室内计算温度,一般取20°C。
te——围护结构冬季室外计算温度,单位:°C。
n——温差修正数系数,外墙,平屋顶取1.00。
ΔT——室内空气与围护结构内表面之间的允许温差°C。
Rk——围护结构内表面换热阻(m2·K/W)
于是,在所建模型中增加评估条件:最小保温层厚度d应满足 ,这在实际工程中,对于围护保温层的厚度确定亦有着重要的意义。 由于实际情况的千变万化,因此我们得到的数据和假定的在实际操作中总存在着微小的误差,因此一个好的模型绝不能由这些微小变动而导致结果的较大改变。为了我们所做的模型能进行比较全面的测试,同时考虑到实际情况,我们选用适宜参数的条件下,设定了一些合理的初始条件,利用计算机进行模型检验,得到包括珍珠保温层在内的一系列保温材料的最佳保温厚度,并且其计算结果亦与实际工程设计中采用的保温层厚度比较接近。
保温层厚度的选择关系到节能建筑的造价和运行成本的经济性问题。生命周期耗费分析法计算保温层经济厚度的数学模型,考虑了建筑物在其生命周期中的采暖能耗,具有科学简单、方便等特点。当缺少采暖系统数据资料时,利用设计规范针对性和适应性较好,对于工程设计具有一定的参考和应用价值,可用于新建或旧有建筑改造以及新型保温材料的设计计算。但是在呼吁以人为本,全面协调可持续发展的今天,从经济和环境两方面综合考虑保温层厚度,应该更为合理,意义更为重大。
⑸ 建筑墙体保温层厚度规定是多少
建筑墙体保温要求是根据当地的气候条件而规定的,并不是统一要求。例如北京地区外墙一般保温厚度为9-8cm,屋面保温最少5cm。
⑹ 关于保温层厚度的问题
你这个保温层厚度的话,基本上现在那种都是隔热保温泡沫,一般来说的话,根据你当地的那个气候,如果你当地是那种比较温热型的气候的话,有上10公分十几公分就很不错了,你像东北那种天气的话,可能就需要三四十公分了,这个主要要根据当地的气候条件来决定的。
⑺ 对于低温压力容器,外容器大小有什么确定是绝热层的厚度吗
绝热层的厚度与容器内外的温差、容器所处的环境、绝热层材料的绝热系数有关。
⑻ 求助:压力容器保温层厚度
什么叫“保温外壳”?是保温层外面的铁皮还是保温容器的外壳?
只要属于GB150或固容规管辖的压力容器,其受压元件所用的不锈钢钢板材料应选用GB24511规定的材料。
也可以选用国外标准对应的材料,但应符合国内相应标准的要求,并进行复验。
⑼ 怎样给压力容器做保温
给压力容器做保温要注意的是不要在压力容器上进行焊接,对保温而言,不能在压力容器上焊保温托架、保温钉等。当然对压力容器保温应由设计图纸规定的,如压力容器的设计温度是在没有保温条件下确定,保温后(或加大保温层厚度)其受压部分的材料有可能超出其设计温度时,是不能擅自进行保温的。
⑽ 保温材料的厚度计算
不是特别小的容器一般按平面考虑,150度采用单层保温就行。公式是:
厚度=导热系数 X (150度-50度)/ (表面放热系数 X (50度-年平均环境温度))